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Abstract. In this paper, we give a new direct proof of a result by Bobtcheva and Piergallini that

provides finite algebraic presentations of two categories, denoted 3Cob and 4HB, whose morphisms
are manifolds of dimension 3 and 4, respectively. More precisely, 3Cob is the category of connected

oriented 3-dimensional cobordisms between connected surfaces with connected boundary, while 4HB is
the category of connected oriented 4-dimensional 2-handlebodies up to 2-deformations. For this purpose,

we explicitly construct the inverse of the functor Φ : 4Alg → 4HB, where 4Alg denotes the free monoidal

category generated by a Bobtcheva–Piergallini Hopf algebra. As an application, we deduce an algebraic
presentation of 3Cob and show that it is equivalent to the one conjectured by Habiro.
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1. Introduction

Categories of n-dimensional cobordisms play a central role in low-dimensional topology, and have
been the subject of extensive study. The category 2Cob of 2-dimensional cobordisms is known to be
freely generated, as a symmetric monoidal category, by a commutative Frobenius algebra: the circle. This
algebraic presentation yields the classification of all Topological Quantum Field Theories (TQFTs) in
dimension 2. This paper focuses on an extension of this result to dimensions 3 and 4. More precisely, we
discuss complete algebraic presentations (with finitely many generators and relations) of certain topo-
logical categories generated, as braided monoidal categories, by a single object: the punctured torus, in
dimension 3, and the solid torus, in dimension 4. In both cases, these objects admit structures of braided
Hopf algebras that can be further enriched, thus leading to the notion of Bobtcheva–Piergallini Hopf
algebras, or simply BP Hopf algebras, see Subsections 2.4 and 2.6 for a definition.

A nice and simple algebraic presentation, such as the one for 2Cob, cannot be expected for the
standard categories of cobordisms in dimension 3 and 4, since both admit infinitely many non-isomorphic
connected objects. Indeed, a complete algebraic presentation of the standard category of n-dimensional
cobordisms was given, for every n ⩾ 3, by Juhász in terms of surgery operations [Ju14], but his lists
of generating objects, generating morphisms, and relations between morphisms are all infinite. There is,
however, a natural category of 3-dimensional cobordisms that admits a single generating object: it is
the category 3Cob of connected oriented (relative) 3-dimensional cobordisms between connected surfaces
with connected boundary, whose tensor product is given by boundary connected sum. This category is
a PROB, meaning that it is a braided monoidal category whose set of objects can be identified with N,
and whose tensor product adds up natural numbers. Hence, 3Cob is monoidally generated by a single
object, the once-punctured torus. The fact that the punctured torus admits the structure of a braided
Hopf algebra in 3Cob was first discovered by Crane and Yetter [CY94].

Building on this observation, Kerler provided a finite set of generating morphisms for 3Cob, and
exhibited a finite list of beautiful and conceptual relations between them [Ke01], although he was not
able to prove that his list was complete, and that he had an algebraic presentation. Since finding one
would also yield a classification of all TQFTs with source 3Cob, this was recognized as one of the central
problems in quantum topology, and included in Ohtsuki’s list [Oh02, Problem 8.16.(1)]. A few years later,
Habiro announced a solution to the problem, and his presentation appeared in [As11]. Unfortunately, a
proof of his claim was never written down.

Kerler’s question was answered by two of the authors of the present paper, who first gave a complete
algebraic presentation of 3Cob in [BP11]. Surprisingly, the solution follows from an algebraic presentation
of a category whose morphisms are manifolds one dimension higher.

In order to explain this, we need to turn our attention to 4-dimensional 2-handlebodies, which are
smooth manifolds obtained from the 4-ball by attaching finitely many 1-handles and 2-handles. Up to
considering a natural equivalence relation on them, discussed here below, connected oriented 4-dimen-
sional 2-handlebodies can be organized as the morphisms of a category 4HB whose objects are connected
oriented 3-dimensional 1-handlebodies1. As for 3Cob, this is a close relative of the standard category of
(smooth) connected oriented 4-dimensional cobordisms, whose objects have boundary, and whose tensor
product is induced by boundary connected sum. By contrast with 3Cob, however, or with any other
category of cobordisms, the vertical boundary of morphisms in 4HB is not required to be trivial, in the
sense that it is not necessarily the cylinder over a surface.

The natural equivalence relation appearing in the definition of morphisms in 4HB is called 2-equiv-
alence, and it is induced by 2-deformations, which are diffeomorphisms that can be implemented by
finite sequences of handle moves that never step outside of the class of 4-dimensional 2-handlebodies. In
other words, when considering 4-dimensional 2-handlebodies up to 2-deformations, creation and removal
of canceling pairs of handles of index 2/3 and 3/4 is forbidden. Whether 2-deformations form a proper
subclass of diffeomorphisms is still an open question, which is closely related to a fundamental open
problem in combinatorial group theory: the Andrews–Curtis conjecture.

A standard way of representing 4-dimensional 2-handlebodies is through Kirby tangles, which are
obtained by drawing the attaching maps of 2-handles on the boundary of a single 0-handle with 1-han-
dles glued to it, and then considering a generic planar projection. It is convenient to represent 1-han-
dles as dotted unknots bounding Seifert disks in the plane. Under this convention, a 2-handle running
over a 1-handle will appear as a knot that pierces the corresponding Seifert disk. Such tangles, modulo

1For the sake of simplicity, in the rest of the paper we will write 4-dimensional 2-handlebodies to mean connected oriented
ones, and 3-dimensional handlebodies to mean connected oriented 3-dimensional 1-handlebodies.



ON ALGEBRAIZATION IN LOW-DIMENSIONAL TOPOLOGY 3

isotopy, 2-handle slides, and 1/2-handle cancellations, form a category 4KT which is equivalent to 4HB
[Ki89, GS99, Ke98, BP11].

The algebraic counterpart of 4HB is the category 4Alg, which is a PROB that is freely generated
by a Bobtcheva–Piergallini (or BP) Hopf algebra. The approach of [BP11] consists in defining a functor
Φ : 4Alg → 4KT and showing that it is an equivalence by factoring it through an equivalence functor
from the category of labeled ribbon surfaces to 4Alg. A labeled ribbon surface serves as a branching set
in the description of a 4-dimensional 2-handlebody as a branched cover of the 4-ball.

In the present paper we provide a simpler direct proof of the same result.

Theorem A. The functor Φ : 4Alg → 4HB sending the generating BP Hopf algebra of 4Alg to the
solid torus is an equivalence of braided monoidal categories.

The idea of our new proof is to construct the inverse functor Φ : 4KT → 4Alg directly and explic-
itly, without any reference to branched coverings. The assignment of a morphism in 4Alg to a Kirby
tangle depends, in our approach, on many auxiliary choices. The main body of the proof deals with the
independence on these choices.

An immediate application of Theorem A is the following detection result. If T and T ′ are Kirby
tangles such that Φ(T ) = Φ(T ′), then T is isomorphic to T ′ in 4KT and the corresponding 4-dimensional
2-handlebodies in 4HB can be 2-deformed into each other.

A further important consequence of Theorem A is an algebraic presentation of 3Cob. Indeed, there
exists a natural boundary functor ∂+ : 4HB → 3Cob making the diagram

4Alg 3Alg

4HB 3Cob

π

Φ ∂+Φ

∂+

into a commutative one. Here, 3Alg is a certain quotient of 4Alg obtained by adding two additional
relations (which make the generating object into a factorizable and anomaly-free BP Hopf algebra). In
order to represent morphisms in 3Cob, we use top tangles in handlebodies, which are an adaptation to
our conventions of Habiro’s bottom tangles in handlebodies (since Habiro reads diagrams from top to
bottom, while we do the opposite). Thus, we can deduce the following.

Corollary B. The functor ∂+Φ : 3Alg → 3Cob sending the generating factorizable and anomaly-
free BP Hopf algebra of 3Alg to the punctured torus is an equivalence of braided monoidal categories.

Proof (assuming Theorem A). We will show in Section 3 that 3Cob ∼= 3KT is the quotient of 4HB ∼= 4KT
by the two relations depicted in Table 3.5.1. Written algebraically, these relations correspond exactly to
relations (f ) and (n) introduced in Subsection 2.6. Moreover, 3Alg is defined precisely as the quotient of
4Alg by these relations. The claim follows now from Theorem A and Proposition 3.5.7. □

This algebraic presentation, first appeared in [BP11], does not coincide with the one announced by

Habiro (see [As11]). Indeed, the latter identifies 3Cob with the free monoidal category 3AlgH generated
by a Habiro Hopf algebra, which features a different set of generating morphisms, and a different list of
relations (see Subsection 2.6 for a definition). However, we prove that 3Alg and 3AlgH are equivalent as
braided monoidal categories, thus establishing the Kerler–Habiro conjecture.

Theorem C (Kerler–Habiro Conjecture). The functor Γ : 3AlgH → 3Alg sending the generating

Habiro Hopf algebra of 3AlgH to the generating factorizable anomaly-free BP Hopf algebra of 3Alg is
an equivalence of braided monoidal categories. Hence, the functor ∂+Φ ◦ Γ : 3AlgH → 3Cob sending the

generating Habiro Hopf algebra of 3AlgH to the punctured torus is an equivalence of braided monoidal
categories.

The braided monoidal functor Γ : 3AlgH → 3Alg was first constructed by the second author in
[Bo20]. In this paper, we define its inverse, thus proving that the algebraic presentations of 3Cob given in

[BP11] and [As11] are equivalent. In addition, we provide a third algebraic presentation 3AlgK by adding
to Kerler’s original list of axioms the braided cocommutativity relation for the adjoint action (a crucial

relation appearing in Habiro’s presentation), and show that 3AlgK is equivalent to 3AlgH. Clearly, also
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in dimension 3 the equality π(Φ(T )) = π(Φ(T ′)) implies an isomorphism between T and T ′ in 3KT, and
an equivalence of the corresponding cobordisms in 3Cob.

Besides giving a complete algebraic presentation of 4HB and 3Cob, Theorems A and C also classify
braided monoidal functors on them. For what concerns existence of examples, in [BD21] it is shown that
every unimodular ribbon Hopf algebra, and more generally every unimodular ribbon category,2 gives
rise to such a functor (a TQFT) on the category of 4-dimensional 2-handlebodies up to 2-deformations.
We point out that the notion of 2-deformation between 4-dimensional 2-handlebodies is conjectured
by Gompf in [Go91] to be different from the one of diffeomorpism, which in this context is equivalent
to 3-deformation. In order to prove Gompf’s conjecture, we can look for a unimodular ribbon Hopf
algebra whose corresponding quantum invariant distinguishes diffeomorphic handlebodies that are not
2-equivalent. The search for such Hopf algebras is a non-trivial challenge, since they have to combine
several properties: at the very least, they should be unimodular, non-factorizable, and non-semisimple
(see [BD21, Subsection 1.1] and [BM02, Section 2]). Quantum groups satisfying all these properties do
not seem to lead to interesting invariants of 4-manifolds, but rather to homological refinements of known
quantum invariants of their 3-dimensional boundaries [BD22]. On the other hand, if the conjecture is
false, every unimodular ribbon Hopf algebra, and more generally every unimodular ribbon category, gives
rise to a quantum invariant of 4-dimensional 2-handlebodies up to diffeomorphisms, and may be useful
for detecting exotic structures on 4-manifolds.

Apart from 3Alg, there is another interesting quotient of 4Alg, defined in [Bo23] as the symmetric
monoidal category freely generated by a BP Hopf algebra with trivial ribbon element (in particular, such a
Hopf algebra is cocommutative). Topologically, this quotient describes the category of cobordisms between
2-dimensional CW-complexes up to 2-equivalence, and hence it is designed to study the Andrews–Curtis
conjecture. Let us recall that the Andrews–Curtis conjecture states that every balanced3 presentation of
the trivial group can be reduced to the trivial presentation trough balanced presentations (that is, by a
sequence of Nielsen transformations on relators and conjugations of relators by generators). This conjec-
ture is open since 1965, and expected to be false. To test potential counterexamples, new cocommutative
BP Hopf algebras with symmetric braiding and trivial ribbon element need to be constructed.

The one-to-one correspondence between algebraic and topological structures established in this paper
might also be useful for understanding quantum groups or ribbon Hopf algebras, since it provides new
graphical methods for establishing identities or constructing central elements. Indeed, every time we
happen to know that a complicated tangle can be trivialized, then it follows that the associated morphism
in 4Alg is the identity.

1.1. Strategy of the proof of Theorem A

Let us explain the main ideas behind the proof of Theorem A. A Hopf algebra H in a braided
monoidal category C comes equipped with the following structure morphisms:

⋄ a product µ : H ⊗H → H and a unit η : 1→ H;
⋄ a coproduct ∆ : H → H ⊗H and a counit ε : H → 1;
⋄ an invertible antipode S : H → H.

These structure morphisms are required to satisfy the standard axioms depicted in Table 2.2.1. A
Bobtcheva–Piergallini Hopf algebra (or BP Hopf algebra for short) is a Hopf algebra in C equipped
with the following additional morphisms:

⋄ an integral form λ : H → 1 and an integral element Λ : 1→ H;
⋄ an invertible ribbon morphism τ : H → H;
⋄ a copairing w : 1→ H ⊗H.

−11

µ η ∆ ε S S−1 λ Λ τ τ−1 w

Figure 1.1.1

2A ribbon category is unimodular if it is finite and if the projective cover of its tensor unit is self-dual.
3A presentation of a group is balanced if it has the same number of generators and relators.
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These morphisms are required to satisfy a set of axioms, which can be found in Subsection 2.4. To
present the generating morphisms and relations between them we will use the graphical notation shown
in Figure 1.1.1. We define 4Alg as the PROB freely generated by a BP Hopf algebra.

In order to construct the functor Φ : 4Alg → 4KT, we need to assign Kirby tangles to generating
morphisms, and to check all relations. The images of the structure morphisms under Φ are given in
Figure 1.1.2 and the relations are checked in Subsection 4.1.

Φ

−11

Φ Φ

Φ Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ

Φ Φ

Figure 1.1.2. Definition of the functor Φ for the generating morphisms and the evaluation and
coevaluation in 4Alg.

Notice that the assignment defined in Figure 1.1.2 replaces each strand representing a copy of the
BP Hopf algebra H with two undotted parallel strands representing (a portion of) a 2-handle in 4KT.
The claim that the functor Φ is full might then be surprising, since a generic tangle in 4KT does not have
this property. However, for any diagram D of a Kirby tangle T , we can choose a so-called bi-ascending
state for all undotted components. This reduces to the choice of a collection of crossings that need to
be reversed in order to trivialize the undotted link representing the 2-handles. Then, we can build a
connected sum of each undotted component with its trivialization along chosen bands. The resulting
diagram still represents T , and has the property that each undotted component is doubled by a trivial
copy which lies below it. An example is given by the first and the last diagrams in Figure 1.1.3, where
the doubling is drawn in gray for convenience.

An algebra morphism Φ(T ) with the property that Φ(Φ(T )) = T is constructed as follows. Given
a diagram of a Kirby tangle T , we specify a bi-ascending state by marking (with gray disks) those
crossings that should be changed in order to trivialize the undotted link. Then, we pick a family of bands
α connecting the undotted link to the bottom base of the projection plane, and we call the resulting
diagram Tα. Next, we decompose Tα into elementary pieces and assign algebra morphisms to each piece
as prescribed in Figures 4.4.4, 4.4.5, and 4.4.6. Finally, we tensor and compose all these morphisms
together. This process is illustrated in Figure 1.1.3. Notice that the algebra morphism we assign to a
crossing depends on whether this crossing is affected by the trivialization or not. By applying the functor Φ
to the resulting algebra morphism Φ(T ), we can verify that Φ(Φ(T )) is isotopic to the original tangle T .

The main body of the proof consists in checking that our assignment actually extends to a well-
defined functor Φ : 4KT → 4Alg that is inverse to Φ. For this purpose, we need to prove that Φ(T ) does
not depend on the various choices we made, meaning that it is independent of the bi-ascending state, of
the set of bands, and of the diagram we picked.

Moreover, we need to check that our assignment is invariant under isotopies and 2-deformations of
T , and that it is compatible with identities, compositions, tensor products, and braidings. The main tool
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Φ(T

Φ

Tα

−1

−1

−1

1

1

1

1
−1

−1

Φ(T ))Φ(T )

Φ

Figure 1.1.3. Example of assignment of the algebraic morphism Φ(T ) to a Kirby tangle T
satisfying Φ(Φ(T )) = T .

in the proof of these properties will be provided by some recursively constructed collection of morphisms
Θ = {Θk : H⊗k+1 → H⊗k}k∈N that intertwines all morphisms in a natural subcategory TAlg of 4Alg
generated (under tensor products and compositions) by some morphisms in the image of Φ (shown in
Figure 4.4.4). More precisely, if ι : TAlg ↪→ 4Alg denotes the inclusion functor, then Θ : ι⊗H ⇒ ι defines
a natural transformation, meaning that, for a morphism F : H⊗s → H⊗t in TAlg, we have

Θt ◦ (F ⊗ id) = F ◦Θs.

Geometrically, Θ implements a 1-handle embracing all the strands of Φ(Φ(T )) corresponding to the
trivialized copy of T in gray. To check independence of the bi-ascending state, we will also need to
implement algebraically a 1-handle embracing the trivialized copy of a single component of T , which will
require the construction of a family of labeled versions of Θ.

1.2. Organization

We start our paper with some algebraic background, in Section 2. After recalling the notion of a
braided monoidal category, we introduce BP Hopf algebras, and define 4Alg as the braided monoidal
category freely generated by a BP Hopf algebra. For each of these algebraic structures we give a diagram-
matic presentation of the defining set of axioms. We prove that 4Alg admits the structure of a ribbon
category, and that its generating object also admits the structure of a Frobenius algebra.

We introduce the notions of factorizable and anomaly-free BP Hopf algebras, which lead to the
definition of the quotient category 3Alg of 4Alg. Then, after recalling the definition of 3AlgH, we construct
a functor Γ : 3AlgH → 3Alg, and prove that it is an equivalence. Furthermore, we deduce another
presentation 3AlgK of 3Alg, which is obtained from the list of axioms found by Kerler in [Ke01] by
adding the braided cocommutativity relation for the adjoint action.

In Section 3, we collect some topological background. First, we recall the definition of the categories
4HB and 3Cob, which are equivalent to the categories of Kirby tangles 4KT and 3KT, respectively. They
are naturally related by a functor ∂+ : 4HB → 3Cob that maps each 4-dimensional 2-handlebody to its
front boundary. Finally, we recall (an upside-down version of) Habiro’s graphical notation for morphisms
in 3Cob as top tangles in handlebodies.

Section 4 is devoted to the proof of Theorem A. After defining the functor Φ : 4Alg → 4KT, we
proceed with the construction of its inverse. In order to do this, we start by introducing a certain subcat-
egory TAlg of 4Alg whose image under Φ consist of Kirby tangles whose 2-handles are separated by the
projection plane in two levels. We describe generators of TAlg explicitly in terms of decorated crossings,
and show that TAlg admits two different ribbon structures. Next, we define two natural transformations
Θ and Θ′ that will be extensively used in the proof of our main result.

In Subsection 4.3, we introduce bi-ascending states of link diagrams, and we describe a complete
set of moves relating any two bi-ascending states of the same link diagram. Subsection 4.4 is devoted
to the construction of the inverse functor Φ : 4KT → 4Alg. In the following one, we define yet another
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pair of natural transformations ΘL
j and Θ̂L

j on a labeled version of 4Alg. In the last subsection, we prove

independence of Φ on the choice of bands, of the bi-ascending state, and of the representative of T within
its 2-equivalence class. Finally, we show that Φ preserves compositions, identities, tensor products, and
braidings, and that it is the inverse of Φ.

For convenience of the reader, we collect all relations and their consequences in Appendix A, and we
recall (and sometimes establish) their proof in Appendix B.

1.3. Acknowledgments

The authors would like to thank Kazuo Habiro for explaining them how to define integral form and
elements in 3AlgH. AB and MDR were supported by the NCCR SwissMAP and Grant 200020 207374
of the Swiss National Science Foundation. IB and RP thank the UZH Institut für Mathematik for its
hospitality during the initial conception of this article.
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2. Algebraic categories

2.1. Monoidal categories

We list here some basic definitions from the general theory of monoidal categories, which are used
repeatedly in the paper. Standard references are provided by [Ma71, EGNO15].

Definition 2.1.1 ([EGNO15, Definitions 2.1.1 & 2.8.1]). A strict monoidal category is a category
C equipped with a functor ⊗ : C ×C → C, called the tensor product, and an object 1 ∈ C, called the
tensor unit, satisfying:

(X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z) for all X,Y, Z ∈ C;

1⊗X = X = X ⊗ 1 for every X ∈ C.

Notice that, thanks to the associativity axiom, bracketing can be ignored in tensor products.

Morphisms in a strict monoidal category C can be efficiently represented using Penrose graphical
notation, which is based on planar graphs and their diagrams. Edges are labeled by objects of C and
are required to be nowhere-horizontal, while vertices are labeled by morphisms of C and are represented
as boxes (called coupons) with distinguished opposite bases (an incoming one, on the bottom, and an
outgoing one, on the top). Composition of diagrams is given by vertical stacking (and is read from bottom
to top), while tensor product is given by horizontal juxtaposition (and is read from left to right).

In the following, all the objects we will consider will be tensor products of a single one, typically
denoted by H, and we will adopt the following notations:

H0 = 1 and H1 = H;

Hn = H⊗n for every n ⩾ 2;

idn = idHn for every n ⩾ 0;

id = id1.

In this setting, up to replacing each edge labeled by Hn with n parallel edges labeled by H, we will
always assume that all the edges share the same label H, so we will drop labels for edges altogether.
Furthermore, we will usually replace vertices by special symbols encoding their label.

We point out that diagrams are considered up to the equivalence relation induced by planar isotopies
(through diagrams with nowhere-horizontal edges). In particular, the planar isotopy depicted in Figure
2.1.1 relates equivalent morphisms.

F

F′F

′F

Figure 2.1.1. Example of planar isotopy, with F and F ′ arbitrary morphisms.

Definition 2.1.2 ([EGNO15, Definitions 8.1.1 & 8.1.2]). A braided strict monoidal category is a
strict monoidal category C equipped with a natural isomorphism of components

cX,Y : X ⊗ Y → Y ⊗X

for all X,Y ∈ C, called the braiding, satisfying:

cX⊗Y,Z = (cX,Z ⊗ idY ) ◦ (idX ⊗ cY,Z) for all X,Y, Z ∈ C;

cX,Y⊗Z = (idY ⊗ cX,Z) ◦ (cX,Y ⊗ idZ) for all X,Y, Z ∈ C.

In Penrose graphical notation, braidings are represented as crossings, and their naturality translates
to the invariance of these planar diagrams under the moves shown in Table 2.1.2, where F denotes any
morphism, including braidings themselves (these moves correspond to isotopies of embedded versions of
these graphs in 3-dimensional space). In the following, since all objects will be tensor powers of a single
object H ∈ C, we will adopt the following short notations:

cn,m = cHn,Hm for all n,m ⩾ 0;

c = c1,1.



ON ALGEBRAIZATION IN LOW-DIMENSIONAL TOPOLOGY 9

Braiding axioms

Braiding morphisms and their inverses

Strict braided monoidal category axioms

= =c =cn,m =c−1 c−1
n,m

F

F

F

F

m

n

mn n

nm m

Table 2.1.2

Definition 2.1.3 ([EGNO15, Definitions 2.10.1, 2.10.2, & 2.10.11]). A strict monoidal category C

is left rigid if every X ∈ C admits a left dual X∗ ∈ C and two morphisms
←
evX : X∗ ⊗X → 1 and

←−
coevX : 1→ X ⊗X∗,

called the left evaluation and coevaluation, satisfying

(idX ⊗ ←evX) ◦ ( ←−coevX ⊗ idX) = idX and (
←
evX ⊗ idX∗) ◦ (idX∗ ⊗ ←−

coevX) = idX∗ .

Given any morphism F ∈ HomC(X,Y ), its left dual F ∗ ∈ HomC(Y
∗, X∗) is defined as

F ∗ = (
←
evY ⊗ idX∗) ◦ (idY ∗ ⊗ F ⊗ idX∗) ◦ (idY ∗ ⊗ ←−

coevX).

Remark 2.1.4. When they exist, left duals are unique up to unique isomorphisms (see [EGNO15,
Proposition 2.10.5.]). In particular, if C is a left rigid strict monoidal category, then for all objects
X,Y ∈ C we have

(X ⊗ Y )∗ = Y ∗ ⊗X∗,

and for all morphisms F ∈ HomC(X,Y ) and G ∈ HomC(Y,Z) we have (see [EGNO15, Exercise 2.10.7])

(G ◦ F )∗ = F ∗ ◦G∗.

Definition 2.1.5 ([EGNO15, Definitions 4.7.7 & 4.7.8]). A pivotal category is a left rigid strict
monoidal category C equipped with a natural isomorphism of components

ψX : X → X∗∗

for every X ∈ C, called the pivotal structure, satisfying

ψX⊗Y = ψX ⊗ ψY for all X,Y ∈ C.

The existence of a pivotal structure ensures that all duals are two-sided, since it induces morphisms
→
evX : X ⊗X∗ → 1 and

−→
coevX : 1→ X∗ ⊗X,

called the right evaluation and coevaluation, defined as
→
evX =

←
evX∗ ◦ (ψX ⊗ idX∗) and

−→
coevX = (idX∗ ⊗ ψ−1X ) ◦ ←−coevX∗ ,
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and satisfying

(
→
evX ⊗ idX) ◦ (idX ⊗ −→

coevX) = idX and (idX∗ ⊗ →evX) ◦ ( −→coevX ⊗ idX∗) = idX∗ .

Given any morphism F ∈ HomC(X,Y ), its left dual F ∗ ∈ HomC(Y
∗, X∗) satisfies

F ∗ = (idX∗ ⊗ →evY ) ◦ (idX∗ ⊗ F ⊗ idY ∗) ◦ ( −→coevX ⊗ idY ∗).

Planar isotopy moves

Evaluation and coevaluation morphisms

==ev coev ncoev =n =ev

Strict rigid monoidal category axioms

FF F ∗

n n

nn

Table 2.1.3

In Penrose graphical notation, duality morphisms (evaluations and coevaluations) can be represented,
at the level of diagrams, as maxima and minima (caps and cups), by dropping the requirement on nowhere-
horizontal edges. In a pivotal category, their properties translate to the invariance of these diagrams under
all planar isotopies, see Table 2.1.3. In general, duals can be encoded by orientations on edges, which
allow for the distinction between left and right duality morphisms. However, we will never actually orient
edges in what follows. Indeed, in our setting, all edges will be understood as being labeled by a single
self-dual object H ∈ C, whose left and right duality morphisms coincide, and whose pivotal isomorphism
is the identity, so no further distinctions will be needed. Therefore, we will adopt the following short
notations:

evn =
←
evHn =

→
evHn for every n ⩾ 0;

coevn =
←−
coevHn =

−→
coevHn for every n ⩾ 0;

ev =
←
ev1 =

→
ev1;

coev =
←−
coev1 =

−→
coev1.

If the rigid monidal category is also braided, as a consequence of the planar isotopy moves in Table
2.1.3 and the naturality of the braiding, we can rotate any crossing as shown in Figure 2.1.4.

Figure 2.1.4. Rotating crossing in a strict rigid monidal braided category.
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Definition 2.1.6 ([EGNO15, Definition 8.10.1]). A ribbon category is a braided pivotal category
C equipped with a natural isomorphism of components

θX : X → X

for every X ∈ C, called the twist, satisfying:

θX⊗Y = cY,X ◦ cX,Y ◦ (θX ⊗ θY ) for all X,Y ∈ C;

(θX)∗ = θX∗ for every X ∈ C.

We will use the notations:

θn = θHn for every n ⩾ 0;

θ = θ1.

Remark 2.1.7. According to [EGNO15, Equation (8.35)], in a sufficiently nice braided strict monoid-
al category, a pivotal structure determines a ribbon structure, and vice versa, by setting

θX =
(
idX ⊗ (

←
evX∗ ◦ c−1X∗∗,X∗)

)
◦ ( ←−coevX ⊗ ψX) for every X ∈ C.

In Penrose graphical notation, twists can be represented by kinks (at least in those ribbon categories
where [EGNO15, Equation (8.35)] holds). Then, their properties translate to the invariance of diagrams
under all framing-preserving isotopies of embedded versions of the corresponding graphs in 3-dimensional
space, see Table 2.1.5. In our setting, where H ∈ C is a self-dual object whose pivotal isomorphism is the
identity, we have

θn = (idn ⊗ coevn) ◦ (cn,n ⊗ idn) ◦ (idn ⊗ evn) for every n ⩾ 0.

=θ = =

Twist morphisms and their inverses

Ribbon structure on a strict rigid braided monoidal category

=

Ribbon axiom

θ−1
nθnθ−1

n

n

n

n

Table 2.1.5

2.2. Braided Hopf algebras and the category Alg

Let C be a braided monoidal category with tensor product ⊗, tensor unit 1, and braiding c. A
braided Hopf algebra in C, or simply a Hopf algebra in C, is an object H ∈ C equipped with the
following structure morphisms:

⋄ a product µ : H ⊗H → H and a unit η : 1→ H;
⋄ a coproduct ∆ : H → H ⊗H and a counit ε : H → 1;
⋄ an antipode S : H → H and its inverse S−1 : H → H.
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These structure morphisms are subject to the following axioms:

µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ), (a1)

µ ◦ (η ⊗ id) = id = µ ◦ (id⊗ η), (a2-2 ′)

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆, (a3)

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆, (a4-4 ′)

(µ⊗ µ) ◦ (id⊗ c⊗ id) ◦ (∆⊗∆) = ∆ ◦ µ, (a5)

ε ◦ µ = ε⊗ ε, (a6)

∆ ◦ η = η ⊗ η, (a7)

ε ◦ η = id1, (a8)

µ ◦ (S ⊗ id) ◦∆ = η ◦ ε = µ ◦ (id⊗ S) ◦∆, (s1-1 ′)

S ◦ S−1 = id = S−1 ◦ S. (s2-3)

A graphical representation of the generators and the defining axioms of a Hopf algebra can be found
in Table 2.2.1, where all edges are assumed to carry the label H (compare with [BP11, Tables 4.7.12
& 4.7.13]). As a well known consequence of these axioms, the antipode satisfies the properties repre-
sented in Table 2.2.2. The reader can find the diagrammatic proofs in Appendix B (see also [BP11,
Propositions 4.1.4]).

Notice that all these structure morphisms, except for the antipode, feature triangles that point either
up or down. This choice is not arbitrary. Indeed, as we will see in Subsection 4.1, triangles pointing up

Hopf algebra axioms

Elementary morphisms

=η=µ

product unit

=∆ =ε

coproduct counit

= =S

antipode inverse antipode

S−1

Bialgebra axioms

Antipode axioms

(a7)(a6)
O

(a5) (a8)

(a3) (a4 ′)(a4)(a1) (a2 ′)(a2)

(s1) (s1 ′) (s2) (s3)

Table 2.2.1

Consequences of the Hopf algebra axioms

(s7)(s5) (s6)(s4) (s8)

Table 2.2.2
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correspond to 2-handles, while those pointing down correspond to 1-handles in the category of Kirby
tangles 4KT introduced in Subsection 3.3.

Definition 2.2.1. We denote by Alg the strict braided monoidal category freely generated by a
Hopf algebra object H. In other words, objects of Alg are tensor powers of H, while morphisms of Alg
are compositions of tensor products of identities, braidings, and structure morphisms µ, η, ∆, ε, S, S−1,
modulo the defining axioms in Table 2.2.1.

By definition, the category Alg satisfies the following universal property.

Universal Property 2.2.2. If C′ is a braided monoidal category and H ′ ∈ C′ is a Hopf algebra,
then there exists a unique braided monoidal functor ΞH′ : Alg → C′ sending H to H ′.

Proposition 2.2.3. There is an involutive anti-monoidal equivalence functor sym : Alg → Alg,
called the symmetry functor, that sends H to itself, where anti-monoidal means

sym(F ⊗ F ′) = sym(F ′)⊗ sym(F )

for all morphisms F, F ′ in Alg.

Proof. The statement follows from the fact that the axioms are invariant under sym. □

2.3. Adjoint action

Let C be a strict braided monoidal category, let (H,µH , ηH ,∆H , εH , SH) be a braided Hopf algebra
in C, and let (A,µA, ηA) be an algebra in C. We recall that a morphism α : H ⊗ A → A defines a left
action of H on A if the following holds:

α ◦ (ηH ⊗ idA) = idA,

α ◦ (µH ⊗ idA) = α ◦ (idH ⊗ α),

α ◦ (idH ⊗ ηA) = ηA ◦ εH ,
α ◦ (idH ⊗ µA) = µA ◦ (α⊗ α) ◦ (idH ⊗ cH,A ⊗ idA) ◦ (∆H ⊗ idA⊗A).

The first two conditions express the fact that A is a left H-module, while the last two conditions
express the fact that the action intertwines the product and the unit of A. The notion of right action is
symmetric, and corresponds to a right H-algebra structure on A.

Definition 2.3.1. For every n ⩾ 0, the left adjoint action adn : H⊗Hn → Hn is inductively defined
by the following identities (see Table 2.3.1):

ad0 = ε

ad1 = ad = µ ◦ (µ⊗ S) ◦ (id⊗ c) ◦ (∆⊗ id), (d1)

adn = (ad⊗ adn−1) ◦ (id⊗ c⊗ idn−1) ◦ (∆⊗ idn). (d2)

We also define the symmetric right adjoint action ad′n : Hn ⊗H → Hn as (see Table 2.3.1):

ad′n = sym(adn). (d1 ′-2 ′)

We denote by Ad the collection of morphisms {adn}n∈N, and similarly by Ad′ the collection
{ad′n}n∈N. The fact that these are indeed left and right actions is a classical result in the theory of
Hopf algebras, and the reader can find the proof in Proposition 2.3.2 below. In particular, the adjoint
action intertwines the product and the unit.

Proposition 2.3.2. If H is a Hopf algebra in C, then its structure morphisms satisfy the identities
appearing in Table 2.3.1. In particular, for every integer n ⩾ 0, the adjoint morphisms adn and ad′n define
a left and a right action of H on Hn respectively.

Proof. Observe that it is enough to prove the statements for adn, since the ones for ad
′
n follow by applying

the functor sym.
Identity (d3) is an immediate consequence of relations (a2-2 ′), (a7), and (s6) in Tables 2.2.1 and

2.2.2. In order to show (d4), we first prove the special case n = 1 in Figure 2.3.2; then the general case
follows by the inductive argument shown in Figure 2.3.3. Identity (d5) follows from axioms (a2 ′) and
(s1 ′) in Table 2.2.1. Identity (d6) is proved in Figure 2.3.4, identity (d7) is verified in Figure 2.3.5, while
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(d8) can be proved in a similar way, by using (s1 ′) instead of (s1). Finally, we derive (d9) as described
in Figure 2.3.6. □

The adjoint actions of a Hopf algebra

Action properties

def
=

def

′ =

Right adjoint actionLeft adjoint action

def
=

n

n

n 1−

n 1−

def

n

n

n 1−

n 1−

=

Other relations

ad

nad n

ad

′ad

(d1)

(d3)

(d4)

(d6)(d5)

(d8)

(d9)

(d7)

(d2)

)′(d1

)′(d2

)′(d3

)′(d4

)′(d5

)′(d8

)′(d9

)′(d7

)′(d6

Table 2.3.1
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(a1)(a5)
(s4)

(d1)
(d1)

(d1)

Figure 2.3.2. Proof of (d4): case n = 1.

(a5) (d2)
(d2)

(d4)
(d4)

(d2)

Figure 2.3.3. Proof of (d4): inductive step.

(a1) (a1)
(a3)

(a2)
(a4)
(s1)

(d1)
(d1)

(d1)

(d2)

Figure 2.3.4. Proof of (d6).

(s1)(d4) (d3)

Figure 2.3.5. Proof of (d7).

(s5) (s4) (s4)(d1) (d1 )′

Figure 2.3.6. Proof of (d9).

If C is the category of left modules over a ring R, equipped with its standard symmetric braiding,
then the adjoint action is only known to intertwine the coproduct and the antipode when the Hopf algebra
is cocommutative, that is, when c ◦∆ = ∆, see [Mo93, Lemma 5.7.2]. The following definition provides a
weaker condition on the Hopf algebra that ensures this intertwining property in the case of an arbitrary
braided category. This condition was first introduced by Majid under the name C-cocommutative action,
see [Ma93, Definition 2.3], or braided cocommutative action, see [Ma94, Definition 2.9].

Definition 2.3.3. The left adjoint action ad : H ⊗ H → H of a Hopf algebra H in a braided
monoidal category C is braided cocommutative if the following holds:

(ad⊗ id) ◦ (id⊗ c) ◦ (∆⊗ id) = c−1 ◦ (id⊗ ad) ◦ (∆⊗ id). (h0)
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Analogously, the right adjoint action ad : H⊗H → H of a Hopf algebra H in a braided monoidal category
C is braided cocommutative if the following holds:

(id⊗ ad′) ◦ (c⊗ id) ◦ (id⊗∆) = c−1 ◦ (ad′ ⊗ id) ◦ (id⊗∆). (h0 ′)

A graphical representation of the braided cocommutativity axiom for adjoint actions is given in
Table 2.3.7. Notice that, when the braiding of C is symmetric, relations (h0) and (h0 ′) are implied by
the cocommutativity condition c ◦∆ = ∆, although they are not equivalent to it.

Braided cocommutative adjoint actions

Intertwining properties

Some consequences of the intertwining properties

Braided cocommutativity axiom for left and right adjoint actions

F F

F F

m

n

m m m

n nn

(h0) )′(h0

(d10)

(d11)

)′(d10

)′(d11

Table 2.3.7

Lemma 2.3.4. If AlgL (respectively AlgR) denotes the strict braided monoidal category freely gen-
erated by a Hopf algebra H with braided cocomutative left (respectively right) adjoint action, then the
latter defines a natural transformation Ad : H ⊗Id ⇒ Id (respectively Ad′ : Id ⊗H ⇒ Id), where

Id denotes the identity functor, meaning that, for every morphism F : Hn → Hm in AlgL, we have

adm ◦ (id⊗ F ) = F ◦ adn, (d10)

and that for every morphism F : Hn → Hm in AlgR we have

ad′m ◦ (F ⊗ id) = F ◦ ad′n. (d10 ′)

Moreover, identities (d11-11 ′) in Table 2.3.7 hold in both AlgL and AlgR.

Proof. Observe that the category AlgL (respectively AlgR) is the quotient of Alg by the braided cocom-
mutativity axiom (h0) (respectively (h0 ′)) and that the functor sym : Alg → Alg induces an equivalence

of categories sym : AlgR → AlgL. Therefore, the statements for AlgR will follow by applying sym, once
the ones for AlgL have been proved.

In order to prove (d10), it is enough to consider the case when F is a structure morphism of H. For
F = µ and for F = η it was already established in Proposition 2.3.2 (see relations (d5) and (d6)), while
for F = ε the statement follows from (a6) in Table 2.2.1. Moreover, since relation (s8) in Table 2.2.2
allows us to express c in terms of the rest of the generating morphisms, and since, whenever F is invertible,
the identity (d10) for F−1 is implied by the one for F , we only need to prove (d10) for F = ∆, S. This
is done in Figures 2.3.8 and 2.3.9.

Now (d11) and (d11 ′) follow directly from (d9) and (d9 ′), respectively, by intertwining the adjoint
action and the antipode. □
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(a3)
(a3)

(a5)

(a5)
(s5)

(h0)(d1)
(a3)

(d1) (d1)(d2)

Figure 2.3.8. Proof of (d10) for F = ∆.

(a1)
(s6)

(a1)
(a3)
(s1)

(a1)

(s4)
(s4)
(s4)

(s1 ′)(d1)
(d1)

(h0)

Figure 2.3.9. Proof of (d10) for F = S.

2.4. BP Hopf algebras and the category 4Alg

In this subsection, we recall the definition and the properties of BP Hopf algebras. These algebraic
structures were first defined and studied in [BP11] in the general context of groupoid Hopf algebras,
where all the edges of the diagrams representing the structure morphisms of the algebra are labeled by
elements of a groupoid G. The notion of a BP Hopf algebra was introduced in [BD21] and corresponds
to the special case of the trivial groupoid G = {1}.

Definition 2.4.1. If C is a braided monoidal category with tensor product ⊗, tensor unit 1, and
braiding c, a Bobtcheva–Piergallini Hopf algebra, or BP Hopf algebra, is a Hopf algebra H in C equipped
with the following structure morphisms:

⋄ an integral form λ : H → 1 and an integral element Λ : 1→ H;
⋄ a ribbon morphism τ : H → H and its inverse τ−1 : H → H;
⋄ a copairing w : 1→ H ⊗H.

These structure morphisms are subject to the following axioms:

(id⊗ λ) ◦∆ = η ◦ λ, (i1)

µ ◦ (Λ⊗ id) = Λ ◦ ε, (i2)

λ ◦ Λ = id1, (i3)

S ◦ Λ = Λ, (i4)

λ ◦ S = λ, (i5)

S ◦ τ = τ ◦ S, (r3)

ε ◦ τ = ε, (r4)

µ ◦ (τ ⊗ id) = τ ◦ µ, (r5)

w = (τ ⊗ τ) ◦∆ ◦ τ−1 ◦ η (r6)

(id⊗∆) ◦ w = (µ⊗ id2) ◦ (id⊗ w ⊗ id) ◦ w, (r7)

∆ ◦ τ−1 = (τ−1 ⊗ τ−1) ◦ Ω ◦ c−1 ◦∆, (r8)

(µ⊗ µ) ◦ (S ⊗ (Ω ◦ c−1 ◦ Ω)⊗ S) ◦ (ρL ⊗ ρR) = c, (r9)

where

Ω = (µ⊗ µ) ◦ (id⊗ w ⊗ id) : H ⊗H → H ⊗H



18 A. BELIAKOVA, I. BOBTCHEVA, M. DE RENZI, AND R. PIERGALLINI

is called the monodromy, while the morphisms

ρL = (id⊗ µ) ◦ (w ⊗ id) : H → H ⊗H and ρR = (µ⊗ id) ◦ (id⊗ w) : H → H ⊗H

define a left and a right H-comodule structure on H, respectively.

A graphical representation of the additional generators and defining axioms of a BP Hopf algebra
can be found in Table 2.4.1, to be added to the list of generators and defining axioms of Hopf algebras
given in Table 2.2.1 (compare with [BP11, Tables 4.7.12 & 4.7.13]).

BP Hopf algebra axioms (in addition to the Hopf algebra axioms)

Elementary morphisms

= =Λ λ τ n =

ribbon morphisms copairing

w =

integral formintegral element

n

Integral axioms

Ribbon axioms

O
(i1) (i2) (i3) (i4) (i5)

(r8) (r9)

−1−1

−1(r7)

0
(r1) (r2)

n
m

n
+m

(r3)

n

n (r5)

n

n(r4)

n

1

−1

1
(r6)

Table 2.4.1

Definition 2.4.2. We denote by 4Alg the strict braided monoidal category freely generated by a
BP Hopf algebra H. In other words, objects of 4Alg are tensor powers of H, while morphisms of 4Alg
are compositions of tensor products of identities, braidings, and structure morphisms µ, η, ∆, ε, S, S−1,
λ, Λ, τ , τ−1, w, modulo the defining axioms listed in Definition 2.4.1.

Observe that, since H is a Hopf algebra in 4Alg, then, according to the Universal Property 2.2.2,
there exists a unique functor 4Ξ : Alg → 4Alg that sends H to itself. Moreover, by definition, we have
the following universal property.

Universal Property 2.4.3. If C′ is a braided monoidal category and H ′ ∈ C′ is a BP Hopf
algebra, then the braided monoidal functor ΞH′ : Alg → C′ given by the universal property of Alg factors
through 4Ξ : Alg → 4Alg.

Remark 2.4.4. As it is shown in Figure 2.4.2, relation (r6) is not an independent axiom, but it is
a consequence of (r8) and the Hopf algebra axioms. We present it as an axiom, first of all, because it
gives an explicit expression for the copairing in terms of the ribbon morphism and the coproduct, and
in second place since, as it will be shown in Proposition 2.5.2, in the presence of (r6) axiom (r8) can be
expressed in terms of the adjoint action by its equivalent forms (d12) or (d12 ′).

Moreover, the original definition of BP Hopf algebra in [BP11, Table 4.7.13] uses as an axiom relation
(p4) in Table 2.4.4 in place of (r6). As it is shown by Kerler in [Ke01, Lemma 4] (see also Figure B.3.4



ON ALGEBRAIZATION IN LOW-DIMENSIONAL TOPOLOGY 19

in Appendix B), those two relations are equivalent modulo the axioms of braided Hopf algebra and the
ribbon axioms (r1) to (r5) and (r7). Therefore Definition 2.4.1 is equivalent to the one in [BP11].

(a7)
(r8)(a2-2′)

1

−1

1

Figure 2.4.2. Proof of (r6) using the rest of the axioms of a BP Hopf algebra.

The reader can find the diagrammatic proofs of the following propositions in Appendix B (see also
[BP11, Propositions 4.1.4, 4.1.5, 4.1.6, 4.1.9, 4.1.10, Lemmas 4.2.5, 4.2.6, Propositions 4.2.7, 4.2.11, 4.2.13]
and [Ke01, Lemmas 1 to 8]).

Proposition 2.4.5. The identities in Table 2.4.3 hold in any braided monoidal category with a Hopf
algebra H, an integral form λ : H → 1, and an integral element Λ : 1 → H satisfying axioms (i1)–(i5)
in Table 2.4.1. In particular, they hold in 4Alg.

Consequences of the integral axioms

=

(i1 ′) (i2 ′)

ev coev=

Symmetry of the integrals

Definition and properties of evaluation and coevaluation

Duality of uni-valent vertices with the same polarization

(e1)

(e3)

(e5)

(e8)

(e6) (e7)

(e4)

def

(e2)

def

)′(e3

)′(e5

)′(e8

)′(e4

Table 2.4.3
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Proposition 2.4.6. The identities in Table 2.4.4 hold in any braided monoidal category with Hopf
algebra H and a family of ribbon morphisms τn : H → H satisfying axioms (r1) to (r7) in Table 2.4.1.
In particular, they hold in 4Alg.

Consequences of the ribbon axioms (r1) to (r7) - Part I

Symmetry of 4Alg (not using the integrals)

Other consequences not using the integrals

(r7 ′)(r5 ′)n

n

(p1)

(p2 ′)(p2)

−2 2

1
−1−1

1 1
1

1 1

(p5)

(p8) (p9)

(p6) (p7)

(p3) (p4)

(p8 ′) (p9 ′)

(p7 ′)

Table 2.4.4

Proposition 2.4.7. The identities in Table 2.4.5 hold in any braided monoidal category with Hopf
algebra H, a family of ribbon morphisms τn : H → H satisfying axioms (r1) to (r7) in Table 2.4.1, and
an integral form λ : H → 1 and an integral element Λ : 1→ H satisfying axioms (i1) to (i5) in the same
table. In particular, the identities in Table 2.4.4 hold in 4Alg.

Consequences of the ribbon axioms (r1) to (r7) - Part II

Extended isotopy moves

Some consequence regarding the integrals

n n

n n

−11n

1

(p10) (p11)

(e9) (e10) (e11) )′(e11

Table 2.4.5
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Proposition 2.4.8. The identities in Table 2.4.6 are satisfied in 4Alg. Moreover, modulo the rest
of the defining axioms, relation (p12) is an equivalent reformulation of axiom (r8), while relation (p13)
is an equivalent reformulation of axiom (r9).

(r8) (r9)Equivalent form of the axiom Equivalent form of the axiom

Consequences of the ribbon axioms (r8) and (r9)

Inverting the antipode through the copairing

1

(p15) (p15 ′)

(p13)

11

2

(p14) (p14 ′)

−2

(p12)

Table 2.4.6

The propositions above have the following implications.

Proposition 2.4.9. 4Alg is a ribbon category (see Definition 2.1.3), with dual (Hn)∗ = Hn for every
n ⩾ 0, and with two-sided evaluation evHn : Hn ⊗Hn → 1 and coevaluation coevHn : 1 → Hn ⊗Hn

defined inductively by ev0 = coev0 = id1 and

ev = evH = λ ◦ µ ◦ (id⊗ S), (e1)

coev = coevH = ∆ ◦ Λ, (e2)

and by

evn = evHn = ev ◦ (id⊗ evn−1 ⊗ id),

coevn = coevHn = (id⊗ coevn−1 ⊗ id) ◦ coev,
for every n > 1. The twist θHn : Hn → Hn is defined for every n ⩾ 0 by

θn = θHn = (evn ⊗ idn) ◦ (idn ⊗ cn,n) ◦ (coevn ⊗ idn).

Proof. The statement follows from the definitions of ev and coev, and from identities (e3-3 ′) and (e5-5 ′)
in Table 2.4.3. □

Proposition 2.4.10. There is an involutive anti-monoidal equivalence functor sym : 4Alg → 4Alg
that sends every object and every structure morphism to itself. Moreover, sym fits into the commutative
diagram of functors:

Alg Alg

4Alg 4Alg

sym

4Ξ 4Ξ

sym

Proof. The statement is a direct consequence of the fact that the symmetric versions (r5 ′) and (r7 ′) of
axioms (r5) and (r7) hold in 4Alg, while all other axioms of 4Alg remain unchanged under sym. □

By a certain abuse of terminology, we will say that two diagrams representing morphisms in 4Alg
are isotopic if they are related by a sequence of the following moves: braiding axioms in Table 2.1.2,
moves (e3-3 ′), (e5-5 ′), and (e6-7) in Table 2.4.3, and relations (e9) to (e11-11 ′) in Table 2.4.5. An
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example of a non-standard isotopy is presented in Figure 2.4.7. Such generalized isotopy moves will be
frequently used in our diagrammatic proofs without explicitly indicating them.

(e11)

(e11 )′

Figure 2.4.7. Examples of isotopies.

2.5. Frobenius structure and braided cocommutativity in 4Alg

Let us sidetrack for a moment, and introduce a modified product µ̃ which, together with the modified
unit η̃ = Λ, and with the standard coproduct ∆ and counit ε, provides every BP Hopf algebra H with a
Frobenius algebra structure.

Proposition 2.5.1. If we set µ̃ = (id⊗ev)◦ (∆⊗ id) and µ̃′ = (ev⊗ id)◦ (id⊗∆), then the following
identities hold in 4Alg:

µ̃ = µ̃′, (q1)

(∆⊗ id) ◦ coev = (id2 ⊗ µ̃) ◦ coev2, (q2)

(µ̃⊗ id2) ◦ coev2 = (id⊗∆) ◦ coev, (q2 ′)

ev2 ◦ (∆⊗ id2) = ev ◦ (id⊗ µ̃), (q3)

ev2 ◦ (id2 ⊗∆) = ev ◦ (µ̃⊗ id), (q3 ′)

µ ◦ (id⊗ µ̃) = µ̃ ◦ (µ⊗ µ) ◦ (id⊗ c⊗ id) ◦ (∆⊗ id2), (q4)

µ ◦ (µ̃⊗ id) = µ̃ ◦ (µ⊗ µ) ◦ (id⊗ c⊗ id) ◦ (id2 ⊗∆). (q4 ′)

The morphism

Some properties of

The defining relation for µ̃

µ̃

µ

(q1)

(q2)

(q3)

(q4)

)′(q2

)′(q3

)′(q4

Table 2.5.1



ON ALGEBRAIZATION IN LOW-DIMENSIONAL TOPOLOGY 23

A graphical representation of relations (q1) to (q4 ′) can be found in Table 2.5.1. Notice that re-
lations (q2), (q2 ′), (q3), and (q3 ′) imply that µ̃ and ∆ are dual to each other with respect to the
coevaluation. Furthermore, as mentioned above, H admits the structure of a Frobenius algebra in 4Alg,
determined by the product µ̃, the unit η̃ = Λ, the coproduct ∆, and the counit ε (see [FS10, Appen-
dix A.2]).

Proof. Relation (q1) follows directly from (e3) and (e4 ′). Relations (q2), (q3), and (q4) are proved in
Figure 2.5.2 (where the reader should ignore for now the dashed boxes and arrows), while relations (q2 ′),
(q3 ′), and (q4 ′) follow by applying the symmetry functor. □

(a5)(s3)

(s3)

(a1)
(s1 ′)

(a3)
(s5)
(s4)

(a1)
(e1)

(a1)(e7)
(e2)

(s4)

(e7)
(e2)

(e1)
(e3)

(q1) (q1)

Figure 2.5.2. Proof of (q2), (q3), and (q4).

Next, let us establish some properties of the adjoint actions of a BP Hopf algebra. Such properties
have already been proved in [BP11, Subsection 4.4], but we present here an alternative argument, based
on the fact that the left and right adjoint actions of a BP Hopf algebra are braided cocommutative.
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Proposition 2.5.2. In a BP Hopf algebra, modulo the other axioms, (r8) and (r9) admit the
equivalent forms presented in Table 2.5.3. Namely, (d12-12 ′) are equivalent to (r8), while (d13-13 ′) and
(d14-14 ′) are equivalent to (r9).

Further properties of the adjoint actions of a BP Hopf algebra

(r8)

(r9)

Other properties

Equivalent forms of the axiom

Equivalent forms of the axiom

(d12)

(d13)

(d14)

(d15) (d16)

)′(d12

)′(d13

)′(d14

)′(d15 )′(d16

Table 2.5.3

Proof. In Figure 2.5.4 we prove that, modulo the rest of the BP Hopf algebra axioms, excluded (r9),
axiom (r8) implies (d12) and the other way around. Therefore, (d12) is an equivalent reformulation of
(r8). Analogously, we show in Figure 2.5.5 that (r9) is equivalent to (d13) modulo the rest of the BP
Hopf algebra axioms, except (r8). Then a straightforward application of (d7-7 ′) and (d8-8 ′) shows that
the diagrams in (d14) represent the inverse morphisms of those represented by the diagrams in (d13),
which gives the equivalence between (r8) and (d14). Then the statements for (d12 ′), (d13 ′) and (d14 ′)
are obtained by applying the functor sym. □
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(a1)

−1

−1

(a1)

(s5) (p6)
(s2)

(s3)

(s3-4)

(s3-4)

(r5-5 ′)
(p12)

(a1)

(r7 ′)
(p1)

−1

1 1

−1

−1−1

−1

−1
−1

−1

(r7)

(p7)

(s3)
(p2 ′)

′)(a2
(r7)

(r5-5′)
(p7)

(a1)
(p1)

(d1)

(d1)

(d8)

(p1)
(e5-11)

(e5-11)

(d12)

Figure 2.5.4. Equivalence between (r8) and (d12).

(a1)
(r7-7′)
(a1)

(p1)

(a1)

(s3-4)

(s3)(d4)

(d1 )′
(r7 )′

(d1)
(d1)-′(e5 11 )′

-′(e5 11 )′

Figure 2.5.5. Equivalence between (r9) and (d13).

Proposition 2.5.3. The left and right adjoint actions of a BP Hopf algebra satisfy the braided co-
commutativity axiom (h0-0 ′), which implies the intertwining properties (d10-10 ′) and relations (d11-11 ′)
in Table 2.3.7. In particular, left and right adjoint actions intertwine all morphisms in 4Alg. Moreover,
they satisfy relations (d15-15 ′) and (d16-16 ′) in Table 2.5.3.

Proof. Concerning the left adjoint action, relation (h0) is proven in Figure 2.5.6. Then, Lemma 2.3.4
implies that (d10) holds for the product, the coproduct, the unit, the counit, the antipode and its inverse,
and also that (d11-11 ′) are satisfied. We have to show that (d10) holds for the integrals, for the ribbon
morphism, and for the copairing. For the integral element it follows from (i2), (i2 ′) and (s7), while for
the integral form it is shown in Figure 2.5.7. For the ribbon morphism it follows from (r5), and (p4)
implies that it holds for the copairing as well. Then, by applying the functor sym, we get the analogous
properties for the right adjoint action. Finally, the proofs of (d15) and (d16) are shown in Figure 2.5.8,
while (d15 ′) and (d16 ′) are obtained by applying sym once again. □

Remark 2.5.4. Notice that the proofs of (d15) and (d16) presented above only use identities (d10),
(d12), the Hopf algebra axioms, and their consequences for the adjoint action presented in Table 2.3.1.

This fact is going to be important later, when we will prove that 3Alg is equivalent to the category 3AlgH

introduced in Subsection 2.6.
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(d4) (d14)(d12 )′

Figure 2.5.6. Proof of (h0).

(a1)
(s4)

(i5)
(s1)

(d2) (d1)(e7)

Figure 2.5.7. Proof of (d10) for F = λ.

(a1)
(a1)
(a1)
(a3)

(s1) (s5)
(s1)
(s7)

(p2)
(s1)
(r7 ′)

(d10)

(d12)

(d10) (d15) (d4)

(d3)

Figure 2.5.8. Proof of (d15) and (d16).

2.6. Factorizable BP Hopf algebras and the categories 3Alg and 3AlgH

In this subsection, we will introduce an important non-degeneracy condition for BP Hopf algebras,
called factorizability. We will prove that factorizable anomaly-free BP Hopf algebras4 are equivalent to
Habiro Hopf algebras, a notion due to Habiro that was first defined in [As11].

Definition 2.6.1. A BP Hopf algebra H in C is factorizable if it satisfies

(λ⊗ id) ◦ w = Λ, (f )

and it is anomaly-free if it satisfies

λ ◦ τ ◦ η = id1. (n)

The axioms of anomaly-free factorizable BP Hopf algebras are presented in Table 2.6.1. These axioms
imply the relations in Table 2.6.2, as it is shown in Section B.4 of Appendix B (see also [BP11, Propo-
sitions 5.4.2 & 5.4.3]). In particular, axiom (f ) implies the existence of a Hopf pairing w : H ⊗H → 1

which, together with the copairing w, satisfies the zigzag identities (f2-2 ′) in Table 2.6.2. Therefore, both
w and w are non-degenerate. By analogy with the standard theory of ribbon Hopf algebras, we use the
term factorizability to denote this property.

4Factorizable anomaly-free BP Hopf algebras were introduced [BP11] under the name boundary ribbon Hopf algebras.
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Factorizability axiom Anomaly-freeness axiom

Additional axioms of a factorizable BP Hopf algebra

1 O
(f ) (n)

Table 2.6.1

Definition and properties of the pairing

Some properties of a factorizable BP Hopf algebra

−1 O

=
def

w
(f1) (f2)

(f3)

n( )

)′(f2

)′(f3

)′(f

andto (n)Relations equivalent (f )

Table 2.6.2

Definition 2.6.2. We denote by 3Alg the strict braided monoidal category freely generated by an
anomaly-free factorizable BP Hopf algebra H. In other words, 3Alg is the quotient of 4Alg by relations (f )
and (n).

Definition 2.6.3. Let C be a braided monoidal category with tensor product ⊗, tensor unit 1, and
braiding c. A Habiro Hopf algebra is a Hopf algebra H in C with braided cocommutative left adjoint
action, equipped with the following structure morphisms:

⋄ a copairing w : 1→ H ⊗H and a pairing w : H ⊗H → 1;
⋄ a ribbon element v+ : 1→ H and its multiplicative inverse v− : 1→ H.

These structure morphisms are subject to the following axioms:

µ ◦ (v+ ⊗ id) = µ ◦ (id⊗ v+), (h1)

µ ◦ (v+ ⊗ v−) = η, (h2)

ε ◦ v+ = id1, (h3)

S ◦ v+ = v+, (h4)

w = (µ⊗ µ) ◦ (v− ⊗ id2 ⊗ v−) ◦∆ ◦ v+, (h5)

(id⊗∆) ◦ w = (µ⊗ id2) ◦ (id⊗ w ⊗ id) ◦ w, (h6)

(id⊗ w) ◦ (w ⊗ id) = id = (w ⊗ id) ◦ (id⊗ w), (h7-7 ′)

w ◦ (µ⊗ v+) ◦ (v+ ⊗ v+) = id1, (h8)

S2 = (id⊗ w) ◦ (c⊗ id) ◦ (id⊗ w). (h9)

We denote by 3AlgH the strict braided monoidal category freely generated by a Habiro Hopf algebra H.

A diagrammatic representation of the generators and the axioms of a Habiro Hopf algebra can be
found in Table 2.6.3. Notice that the notation adopted for all structure morphisms, with the exception
of the ribbon elements, is the same as the one used for the analogous structure morphisms of BP Hopf
algebras in Tables 2.4.1 and 2.6.1. This should not cause any confusion since, as we will see below, the
functor from 3AlgH to 3Alg matches the corresponding structure morphisms.
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Habiro Hopf algebra axioms (in addition to the Hopf algebra axioms)

ribbon element and its inverse pairing

v+ = v− = w

Elementary morphisms

Braided cocommutativity of the left adjoint action

Ribbon axioms

Ribbon morphisms

O

O

copairing

w =

=

=

n n

τn =τ−n

(h0)

(h1) (h2) (h3) (h4)

(h5)

(h8) (h9)

(h6)

(h7) )′(h7

Table 2.6.3

Some properties of a Habiro Hopf algebra

(h10) (h11))′(h6 )′(h10

Table 2.6.4

Lemma 2.6.4. The ribbon morphisms of 3AlgH, defined in Table 2.6.3, satisfy the ribbon axioms
(r1) to (r5) of a BP Hopf algebra in Table 2.4.1. Moreover, the relations in Table 2.4.4 are satisfied in

3AlgH.

Proof. The fact that the ribbon morphism of 3AlgH satisfy axioms (r1) to (r5) in Table 2.4.1 is a
straightforward consequence of axioms (h1) to (h4) and the associativity of the product. Moreover,
axiom (h5) and (h6) are equal correspondingly to (r6) and (r7). Therefore, relations (r1) to (r7) are

satisfied in 3AlgH. According to Proposition 2.4.5, this implies that the relations in Table 2.4.4 hold in
3AlgH. □
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Remark 2.6.5. The set of axioms of a Habiro Hopf algebra, as originally presented in [As11], contains
also the relations in Table 2.6.4. Proposition 2.6.4 implies that those relations are actually consequences
of the axioms in Table 2.6.3. Indeed, (h6 ′) is equal to (r7 ′), (h10-10 ′) are equal to (p2-2 ′) while (h11) is
obtained by composing (p8) with the unit morphism.

Proposition 2.6.6. There exists a braided monoidal functor Γ : 3AlgH → 3Alg which preserves the
Hopf algebra structure morphisms, sends the pairing and the copairing in 3AlgH to the corresponding
ones in 3Alg (see Table 2.6.1) and sends the ribbon elements to the morphisms represented in Figure
2.6.5, meaning

Γ(v+) = τ−1 ◦ η and Γ(v−) = τ ◦ η.

−1 1
Γ Γ

Figure 2.6.5. Images under Γ : 3AlgH → 3Alg of the ribbon element and its inverse.

Proof. Since 3Alg and 3AlgH are both braided Hopf algebras with braided cocommutative left actions
(see Proposition 2.5.2), it is enough to show that the defining ribbon axioms of 3AlgH in Table 2.6.3 are
satisfied in 3Alg, once each elementary morphism has been replaced by its image under Γ. All of them,
with the exception of (h8) and (h9), coincide or follow directly from axioms or properties of 3Alg in
Tables 2.4.1, 2.4.4 and 2.6.1. The proofs of (h8) and (h9) are presented in Figures 2.6.6 and 2.6.7. □

−1

−1−1
−1 −1−2

−1

−1−2 −1 −1 O
(r5-5′)
(a2)

(h5)(e10)

(f1)

(i1) (n)

Figure 2.6.6. Proof of (h8).

(e5)
(f2 )′

(e11)

Figure 2.6.7. Proof of (h9).

In order to prove that Γ is an equivalence of categories, we need some preliminary results.

Lemma 2.6.7. Identities (d10) and (d11-11 ′) in Table 2.3.7 hold in 3AlgH. In particular, the left

adjoint action intertwines all morphisms in 3AlgH.

Proof. Since the left adjoint action in 3AlgH is braided cocommutative, Lemma 2.3.4 implies that (d10)

for F = c, µ, η,∆, ε, S and (d11-11 ′) hold in 3AlgH. On the other hand, (d10) for v± follows directly
from axioms (h1), (h2) and (a3). Moreover axiom (h5) implies that (d10) for F = w follows from (d10)
for v±, ∆, and µ. Finally, as it is shown in Figure 2.6.8, (d10) for F = w follows from (d10) for w and
axioms (h7-7 ′). □

(h7)
for w

(a3)(d7)

(d2)

(d10)
(d7)

(h7 )′

Figure 2.6.8. Proof of (d10) for w.
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Lemma 2.6.8. Identities (d12), (d13), (d15) and (d16) in Table 2.5.3 are satisfied in 3AlgH.

Proof. The proofs of (d12) and (d13) are presented in Figures 2.6.9 and 2.6.10, while (d15) and (d16)
follow from (d10) and (d12) as it is shown in Figure 2.5.8 (see Remark 2.5.4). □

(a1)
(a3)

′)(a2
′)(a4

(s1)(p1)

(h7)
(h6 )′ (h7)

(h6 )′

(a4)

(a3)
(d2)
(d10)

(h7) (a3)

(a4)
(d7)

(a1)
(d1)

Figure 2.6.9. Proof of (d12) in 3AlgH.

(h0)(a1)
(h7) (a2)

(s1)

(a1)

(h6)

(h6 ′)
(p1)

(h7)
(h9)

(h6)

(s2)

(d4)

(d3)
(h7)

(h10)

Figure 2.6.10. Proof of (d13) in 3AlgH.

Recall that 4Alg, and hence 3Alg, are ribbon categories whose evaluation and coevaluation are
constructed using the integral form and element. Our next goal will be to show that 3AlgH admits
another ribbon structure, with evaluation and coevaluation given by the Hopf pairing and copairing. We
will use the notation H∨ for the dual of H with respect to the Hopf pairing.

Proposition 2.6.9. 3AlgH is a ribbon category (see Definition 2.1.3), with dual (Hn)∨ = Hn for
every n ⩾ 0, and with two-sided evaluation wHn : Hn ⊗Hn → 1 and coevaluation wHn : 1→ Hn ⊗Hn

inductively defined by w0 = w1 = w0 = w1 = id1,

w1 = wH = w,

w1 = wH = w,

and by

wn = wHn = w ◦ (id⊗ wn−1 ⊗ id),

wn = wHn = (id⊗ wn−1 ⊗ id) ◦ w,
for every n > 1. The twist ϑHn : Hn → Hn is defined for every n ⩾ 0 by

ϑn = ϑHn = (wn ⊗ idn) ◦ (idn ⊗ cn,n) ◦ (wn ⊗ idn).

Moreover, in 3AlgH we have

µ∨ = ∆, η∨ = ε, S∨ = S, w∨ = w.

Proof. The statement concerning the ribbon structure follows from relations (h7-7 ′) and (h9) in Ta-
ble 2.6.3, together with the fact that S∨ = S. Indeed, S∨ = (id⊗w) ◦ (id⊗ S ⊗ id) ◦ (w⊗ id) is equal to
S due to (p1) in Table 2.4.4 and (h7). The identities concerning the rest of the dual morphisms follow
directly from relations (h6-6 ′) and (h7-7 ′) in Table 2.6.3 and (h10-10 ′) in Table 2.6.4. □

Proposition 2.6.9 implies that, if a morphism F is a composition of tensor products of structure
morphisms, other than the ribbon elements, then the diagram representing F∨ is obtained from the
diagram representing F by rotating it of an angle π. Moreover, by dualizing each side of a given relation
between morphisms of 3AlgH, we obtain another relation between the corresponding dual morphisms, to
which we will refer as the dual relation, or property. For example, the dual of relation (p1) states that
w ◦ (S ⊗ id) = w ◦ (id⊗ S), and we will refer to it as (p1∨).
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The following result is due to Habiro.

Proposition 2.6.10 (Habiro). In 3AlgH, the morphisms λ = w◦(µ⊗ id)◦(id⊗v+⊗v+) and Λ = λ∨

are S-invariant integral form and integral element satisfying relations (i1) to (i5) in Table 2.4.1.

Integrals for a Habiro Hopf algebra

integral formintegral element

=Λ =λ
defdef

Table 2.6.11

Proof. Observe that axioms (h1) and (h4) and relations (s4) and (p1∨) imply that the integral form is
S-invariant, meaning that λ ◦ S = λ. Therefore, if we show that λ is a right integral form, meaning that
it satisfies relations (i1) and (i5), then, by considering the dual relation, we would get that Λ = λ∨ is an
S-invariant integral element.

The proof that λ is a right integral form is shown in Figures 2.6.12 and 2.6.13. Finally, the relation
λ ◦ Λ = id1 is proved in Figure 2.6.14. □

(a5)

(s1) (s4)

(h1)
)(a2-4

)(a1-3 (a3)

(a5)
(a1)

(h5)
(h4)

(h1)

(h5)
(h1)

(h6-6′)
(h7)
(h7 ′)

(h6 ′ )∨

Figure 2.6.12. Proof of (i1) in 3AlgH (see Figure 2.6.13 for the last step).

(a1)

(s4) (s2)
(s2)(h1)

(h1)
(s7)
(s1 ′)

(a1)

(a1)

(s2-4)

(s3-5)

(h7)

(p1)

(h9)(d1 )′

(h11)

(d10)

(d16)

(d11 )′

Figure 2.6.13. Last step in the proof of (i1) in 3AlgH.

O
(h4)
(h4)
(h9)
(h7)

(h7)
(h7)
(h6)
(h7)

(h8)

(h7)
(h3)

(h7 )′ (i1)
(h10)

Figure 2.6.14. Proof of (i3) in 3AlgH, that is, λ ◦ Λ = id1.
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Theorem 2.6.11. The braided monoidal functor Γ : 3AlgH → 3Alg is an equivalence of categories.

Proof. We recall that, modulo the other axioms of 4Alg, (r8) and (r9) are equivalent to (d12) and (d13)
in Table 2.5.3, respectively. Therefore, the quotient 3Alg is equivalent to the category freely generated
by the elementary morphisms and relations presented in Tables 2.2.1, 2.4.1 and 2.6.1, where axioms (r8)
and (r9) have been replaced by (d12) and (d13) in Table 2.5.3.

We define now a braided monoidal functor Γ : 3Alg → 3AlgH by sending all elementary morphisms
of 3Alg to the corresponding morphisms of 3AlgH. In order to see that the functor is well defined we
have to check that all axioms of 3Alg are satisfied in its image. For the integral axioms and for relations
(d12) and (d13) this follows correspondingly from Proposition 2.6.10 and from Lemma 2.6.8. The ribbon
axioms (r1) to (r7) are equivalent to (h1) to (h6), while axiom (n) in Table 2.6.1 follows from (h2), (h3)
and (h10). Now it is left to observe that Γ ◦ Γ = id3AlgH and Γ ◦ Γ = id3Alg. □

Let us finish this subsection by introducing yet another equivalent presentation of 3Alg. More pre-
cisely, we will show that, by adding the braided cocommutativity relation for the adjoint action to Kerler’s
original list of axioms, we obtain a category that is equivalent to 3Alg.

Definition 2.6.12. Let C be a braided monoidal category with tensor product ⊗, tensor unit 1,
and braiding c. A Kerler Hopf algebra is a Hopf algebra H in C with braided cocommutative left adjoint
action, equipped with the following structure morphisms:

⋄ an integral form λ : H → 1 and an integral element Λ : 1→ H;
⋄ a copairing w : 1→ H ⊗H;
⋄ a ribbon element v+ : 1→ H and its multiplicative inverse v− : 1→ H.

These structure morphisms are subject to the following axioms:

(id⊗ λ) ◦∆ = η ◦ λ, (i1)

µ ◦ (Λ⊗ id) = Λ ◦ ε, (i2)

λ ◦ Λ = id1, (i3)

S ◦ Λ = Λ, (i4)

λ ◦ S = λ, (i5)

µ ◦ (v+ ⊗ id) = µ ◦ (id⊗ v+), (h1)

µ ◦ (v+ ⊗ v−) = η, (h2)

ε ◦ v+ = id1, (h3)

S ◦ v+ = v+, (h4)

w = (µ⊗ µ) ◦ (v− ⊗ id2 ⊗ v−) ◦∆ ◦ v+, (h5)

(id⊗∆) ◦ w = (µ⊗ id2) ◦ (id⊗ w ⊗ id) ◦ w, (h6)

(λ⊗ id) ◦ w = Λ, (f )

λ ◦ v+ = id1. (n)

We denote by 3AlgK the strict braided monoidal category freely generated by a Kerler Hopf algebra H.

A diagrammatic representation of the generators and the axioms of a Kerler Hopf algebra are pre-
sented in Table 2.6.15.

Corollary 2.6.13. There exists a braided monoidal equivalence between the categories 3AlgK and
3AlgH that preserves the corresponding Hopf algebra structures.

Proof. By definition, the Hopf algebra in 3AlgK has S-invariant integral form and element. Moreover,
the copairing and the ribbon morphisms defined in Table 2.6.15 satisfy axioms (r1)–(r7) in Table 2.4.1.

This implies that sym induces a well defined equivalence functor from 3AlgK to itself, and that, according
to Propositions 2.4.5, 2.4.6, and 2.4.7, the properties in Tables 2.4.3, 2.4.4, and 2.4.5 hold in 3AlgK. In
particular, we can define evaluation and coevaluation morphisms by relations (e1-2) in Table 2.4.3 and
a pairing by the expansion (f1) in Table 2.6.2. Moreover, we can see that relations (h7-7 ′), (h8) and

(h9) in Table 2.6.3 and (n) in Table 2.6.2 hold in 3AlgK as well. Indeed, the proofs of (h7), (h8), (h9),
and (n), which are presented in Figures B.4.1, 2.6.6, 2.6.7, and B.4.2, respectively, use only axioms and
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Braided cocommutativity of the left adjoint action

Ribbon axioms

ribbon element and its inverse

v+ = v− =

Elementary morphisms

copairing

w == =Λ λ

integral formintegral element

Kerler Hopf algebra axioms (in addition to the Hopf algebra axioms)

Ribbon morphisms

=

n n

τn =τ−n

O

O

Factorizability axiom Anomaly-freeness axiom

Integral axioms

(h0)

(h1) (h2) (h3) (h4)

(h5) (h6)

(f ) (n)

O
(i1) (i2) (i3) (i4) (i5)

Table 2.6.15

relations which are satisfied in 3AlgK, while (h7 ′) follows by symmetry. Therefore, there exists a well-

defined braided monoidal functor from 3AlgH to 3AlgK sending the elementary morphisms of 3AlgH to
the corresponding morphisms of 3AlgK.

The inverse functor from 3AlgK to 3AlgH is defined by sending the integral form and element in
3AlgK to the ones shown in Table 2.6.11 in 3AlgH. Then the only non trivial relations to be checked are
the integral relations, which are satisfied by Proposition 2.6.10. □

Notice that, in his original definition [Ke01], Kerler used the non-degeneracy of the copairing instead
of the integral axioms, but he also showed that these axioms are interchangeable.
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3. Topological categories

3.1. The category KT of Kirby tangles

Our main object of interest will be the category of oriented 4-dimensional relative 2-handlebod-
ies (see Subsection 3.2) modulo 2-equivalence, which is an equivalence relation generated by slides and
cancellations of 1-handles and 2-handles. Following [Ki89, GS99, BP11], morphisms in this category will
be described in terms of a particular class of tangles, called admissible Kirby tangles (compare with
Definition 3.3.3 below), considered up to 2-deformations, which implement the above handle moves.
In this section, we will discuss the general notion of Kirby tangle, which will be further restricted in
Subsection 3.3 to the notion of admissible Kirby tangle, in order to represent 4-dimensional 2-handlebod-
ies.

We start by fixing the following notation. For any integer k ⩾ 0, we set

Ek := {ek,1, ek,2, . . . , ek,k} ⊂ [0, 1]2,

with the k points ek,i uniformly distributed along ]0, 1[× {1/2}. In particular, E0 = ̸O.

Definition 3.1.1. Given two integers k, ℓ ⩾ 0 such that k+ ℓ is even, a Kirby tangle from Ek to Eℓ

consists of the following data:
(a) a collection of m ⩾ 0 dotted unknots U1, U2, . . . , Um, together with disjoint flat spanning disks

D1, D2, . . . , Dm embedded into ]0, 1[
3
;

(b) an undotted tangle properly and smoothly embedded into [0, 1]3, which is transversal to the span-
ning disks, and which consists of a link L = L1∪L2∪· · ·∪Ln formed by n ⩾ 0 closed components,
and of (k + ℓ)/2 arcs whose endpoints belong to (Ek × {0}) ∪ (Eℓ × {1}), all endowed with the
blackboard framing with respect to the projection [0, 1]3 → [0, 1]2 that forgets the second coordi-
nate.

Definition 3.1.2. Two Kirby tangles are said to be 2-equivalent if they are related by a finite
sequence of the following operations, called 2-deformations:

(a) performing an ambient isotopy of the tangle in [0, 1]3 that fixes the boundary and preserves the
intersections between the disks spanned by the dotted unknots and the undotted components;

(b) pushing an arc of any undotted (possibly open) component C through the disk D spanned by any
dotted unknot U in such a way that two opposite transversal intersection points between C and
D appear/disappear;

(c) adding/deleting a dotted unknot U and an undotted closed component C such that the disk D
spanned by U is pierced only once by C and by no other undotted component;

(d) sliding any (possibly open) undotted component C over any different closed one C ′, that is, re-
placing C by a (blackboard parallel) band connected sum of itself with a parallel copy of C ′.

Next, 2-equivalence classes of Kirby tangles can be organized as the morphisms of a strict monoidal
category, as specified by the following definition.

Definition 3.1.3. We denote by KT the strict monoidal category whose objects are the sets Ek for
k ⩾ 0, and whose morphisms from Ek to Eℓ are 2-equivalence classes of Kirby tangles from Ek to Eℓ.

The composition T ′ ◦ T of two morphisms T : Ek → Eℓ and T ′ : Ek′ → Eℓ′ with ℓ = k′ is given by
vertical juxtaposition, with T ′ on top of T , and by rescaling the third coordinate of a factor 1/2.

The tensor product, denoted ⊔, is given by horizontal juxtaposition, followed by a suitable reparam-
eterization of the first coordinate, in such a way that

Ek ⊔ Ek′ = Ek+k′

on the level of objects. For the tensor product of two morphisms T : Ek → Eℓ and T ′ : Ek′ → Eℓ′ , the
reparameterization of the first coordinate depends on the third one, in order to simultaneously realize
the above equality at both the source and the target level, and to get in this way a Kirby tangle from
Ek+k′ to Eℓ+ℓ′ representing T ⊔ T ′.

For each k ⩾ 0, the identity idEk
is represented by the product Ek×[0, 1], interpreted as a Kirby tangle

consisting of k undotted arcs. In particular, the empty Kirby tangle represents id1, since 1 = E0 = ̸O.

Kirby tangles live in ]0, 1[
2 × [0, 1] and will be always represented through their planar diagrams by

the projection to the square ]0, 1[× [0, 1] that forgets the second coordinate, in such a way that the factor

]0, 1[
2
projects to ]0, 1[. As usual, we require that the restriction of the projection to the tangle, including

both dotted and undotted components, is regular, and that it is injective except for a finite number of
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transversal double points, which give rise to crossings. We will use the same letter to denote both a Kirby
tangle and its plane projection.

In the following, we will need to consider particular planar diagrams of Kirby tangles whose projection
satisfies an extra regularity property, as specified by the next definition.

Definition 3.1.4. Given a Kirby tangle T as in Definition 3.1.1, we say a planar diagram of T is
strictly regular if the disks D1, . . . , Dm spanned by the dotted unknots project bijectively onto disjoint
planar disks, and if the projection of the undotted tangle intersects each of such disks as presented on
the top right figure in Table 3.1.1.

′D

Sliding a framed component over a closed one

Pushing through the disk spanned by a dotted unknot

′

D

D

D

D

D

DD

′D

Elementary diagrams and 2-equivalence moves for Kirby tangles

Elementary diagrams

Isotopy moves (D and any elementary diagrams)

Adding/deleting a canceling pair

Table 3.1.1
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All the planar diagrams we have drawn until now are strictly regular, but using strictly regular
diagrams to represent admissible Kirby tangles sometimes makes pictures quite heavy. In the following,
when this will not cause confusion, we will often draw planar diagrams that are not strictly regular.
However, we will always keep the condition that the disks D1, . . . , Dm project bijectively onto disjoint
planar disks.

The next proposition provides a presentation of the monoidal category KT in terms of the generators
and relations represented in Table 3.1.1. Here, the isotopy moves correspond to those ambient isotopies
of Kirby tangles in [0, 1]3 that preserve the intersections between the undotted components and the disks
spanned by the dotted unknots in the standard form shown as the rightmost elementary diagram, while
the pushing-through moves are needed to relax this last condition. On the other hand, the diagram
operations on the bottom correspond to operations (c) and (d) in Definition 3.1.2.

Proposition 3.1.5. Up to ambient isotopy in [0, 1]3, any Kirby tangle T ∈ KT can be expressed as
a composition of tensor products of the elementary diagrams in Table 3.1.1 that yields a strictly regular
planar diagram of T . Moreover, any two strictly regular planar diagrams expressed in this way represent
2-equivalent Kirby tangles if and only if, up to planar isotopy preserving the expression as composition
of tensor products, they are related by a finite sequence of the isotopy moves and the diagram operations
in the same Table 3.1.1.

Proof. The first part of the statement concerning generators immediately follows from a standard trans-
versality argument. On the other hand, all the moves and operations in Table 3.1.1 clearly represent
2-deformations of Kirby tangles, so we only need to prove that they are sufficient to realize any 2-equiv-
alence. Since operations (c) and (d) in Definition 3.1.2 correspond to the last two moves in Table 3.1.1,
we are left to prove that the remaining moves in that table can generate any isotopy of Kirby tangles.

Modulo the pushing-through moves in Table 3.1.1, we can assume that, during the isotopy, the
disks spanned by the dotted unknots are rigidly moved in space, and that the intersections between
the disks spanned by the dotted unknots and the undotted components are preserved, as in point (a)
of Definition 3.1.2. Actually, this would require also the move where a cup is pushed through the disk
spanned by a dotted unknot from above, but up to the isotopy moves this is equivalent to the second
pushing-through move in Table 3.1.1, where a cap is pushed through that disk from below.

Furthermore, modulo the isotopy move where a dotted component passes from one side of a multiple
cap to the other, we can also assume that, at the end of the isotopy, each disk spanned by a dotted unknot
is sent into its image in such a way that the orientation induced by the plane projection of the diagram
is preserved.

These assumptions allow us to consider the last elementary diagram in Table 3.1.1 as a coupon with
the same number of incoming and outgoing edges, and hence to apply [Tu94, Chapter I, Lemma 3.4]. Then,
it is enough to observe that the relations in that lemma can be generated by the moves in Table 3.1.1. □

We conclude this subsection with a simple proposition, which reduces the slide operation in Ta-
ble 3.1.1 to a special case. This will be useful to prove our main theorem.

Proposition 3.1.6. In a Kirby tangle, any slide of a (possibly open) undotted component over a
closed one can be realized, up to isotopy and addition/deletion of canceling pairs, by a sequence of slides
over undotted components that form at most one self-crossing, and hence are unknots with framing 0 or
±1.

Proof. Consider a slide over a closed undotted component C, and proceed by induction on the number
c ⩾ 0 of self-crossings of C. If c ⩽ 1, there is nothing to prove. So assume c > 1, and look at any
self-crossing of C. Here, we modify the diagram as indicated in Figure 3.1.2. The original diagram on
the left-hand side can be obtained from the one on the right-hand side by sliding C ′, first over C ′′ and
then over C ′′′, and by deleting in sequence two canceling 1/2-pairs. Since both C ′′ and C ′′′ have less than
c self-crossings, we can realize the slides over them by using the inductive hypothesis. To complete the

U U

C C ′ C ′′

′

C ′′′

Figure 3.1.2. Proof of Proposition 3.1.6.
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proof, it is enough to observe that, up to the modification in the figure, a slide over C is the same as a
sequence of slides over C ′, C ′′, and C ′′′, and hence we can use the inductive hypothesis once again, since
also C ′ has less than c self-crossing. □

3.2. 4-dimensional relative 2-handlebodies

We review now the notion of an oriented 4-dimensional relative 2-handlebody built over a connected
3-manifold with (possibly empty) boundary. For the basic definitions about handle decompositions we
refer to [GS99], while a detailed discussion of the specific topic mentioned above can be found in [BP11,
Subsections 2.1 & 2.2], where the notion is actually considered in the more general context of multiple
0-handles.

Definition 3.2.1. Given a compact connected oriented 3-manifoldM with (possibly empty) bound-
ary, an oriented 4-dimensional relative 2-handlebody built on M is an oriented smooth 4-manifold with
a given handle decomposition

W =W0 ∪m
i=1 H

1
i ∪n

j=1 H
2
j ,

whereW0 =M×[0, 1] ⊂W is a smooth collar ofM×{0} with product orientation,W1 =W0∪m
i=1H

1
i ⊂W

is a smooth submanifold obtained by attaching the 1-handles H1
i = B1 × B3 to the interior of the front

boundary ∂+W0 = M × {1}, and finally W = W1 ∪n
j=1 H

2
j is obtained by attaching the 2-handles

H2
j = B2 ×B2 to the interior of the front boundary ∂+W1 = ∂W1 ∖ ∂

(
M × [0, 1[

)
.

By identifying M with M × {0} ⊂ W , we think of it as a smooth submanifold of ∂W , and we call
the family of handles forming W starting from M × [0, 1] a relative 2-handlebody decomposition of the
pair (W,M).

We remark that this definition reduces to the standard one when M is a closed 3-manifold (compare
with [GS99, Definition 4.2.1]). In particular, for M ∼= S3, we can fill S3 ∼= S3 × {0} with B4 and get in
this way the notion of an (absolute) connected oriented 4-dimensional 2-handlebody, by thinking of B4

as the starting 0-handle.
For a handlebody decomposition of (W,M) as above, the connectedness of M and the orientability

of W imply that there is a unique way to attach the 1-handles, up to ambient isotopy of their attaching
balls in ∂+W0, which does not change the diffeomophism type of the pair (W,M). On the other hand,
the 2-handles can be specified by a framed link in ∂+W1, whose jth component uniquely determines up
to isotopy an embedding S1 × B2 → ∂+W1 giving the attaching map of a single 2-handle H2

j , once it is

identified with B2 × B2. In this case too, an ambient isotopy in ∂+W1 of the framed link representing
the 2-handles does not affect the diffeomorphism type of (W,M).

Definition 3.2.2. Two oriented 4-dimensional relative 2-handlebodies W and W ′ built on the same
compact connected oriented 3-manifold M are said to be 2-equivalent if the relative 2-handlebody de-
compositions of (W,M) and (W ′,M) are related by a 2-deformation, meaning a finite sequence of the
following operations:

(a) isotoping the attaching maps of the handles;
(b) adding/deleting a canceling pair consisting of a 1-handle and a 2-handle;
(c) sliding a 2-handle over another one.

It is worth noticing that also the operation of sliding a 1-handle over another one is admitted, as it
can be obtained from (b) and (c), see for instance [BP11, Figure 2.2.11].

We already observed that the operations of type (a) preserve the diffeomorphism type of the han-
dlebody, and it is easy to see that the same holds for the those of type (b) and (c). Hence, if two oriented
4-dimensional relative 2-handlebodies are 2-equivalent, then they are diffeomorphic.

Viceversa, whether diffeomorphic oriented 4-dimensional relative 2-handlebodies are always 2-equiv-
alent is an open question, which is expected to have negative answer (see [Ki89, Section I.6] and [GS99,
Section 5.1]). A list of 4-dimensional 2-handlebodies which are diffeomorphic but conjecturally not 2-e-
quivalent can be found in [Go91].

On the other hand, it is known that homeomophic oriented 4-dimensional relative 2-handlebodies
are not necessarily diffeomorphic. See [Ak16, Section 9.1] for examples of such exotic handlebodies.

In the following, we will focus on the special case when M = Ms,t
∼= Ms ♮ Mt is the boundary

connected sum of two (absolute) connected oriented 3-dimensional 1-handlebodies

Ms
∼= H0 ∪s

i=1 H
1
i and Mt

∼= H0 ∪t
i=1 H

1
i ,
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with s, t ⩾ 0. We assume that Ms and Mt are canonically realized inside R3, by identifying H0 with
[0, 1]3 and attaching each 1-handle H1

i to ]0, 1[
2 × {1}. So, we can set

Ms,t = (Ms × {0}) ∪ ([0, 1]2 × {0} × [0, 1]) ∪ (Mt × {1}) ⊂ R4,

as depicted on the left-hand side of Figure 3.2.1. Then, we consider a canonical identification

Ms,t × [0, 1] ∼= (Ms × [0, 0.1]) ∪ ([0, 1]3 × [0.1, 0.9]) ∪ (Mt × [0.9, 1]) ⊂ R4

such that Ms,t corresponds to Ms,t×{0} (see the right-hand side of Figure 3.2.1). Notice that, since Ms,t

is a subset of R4, the cylinder Ms,t× [0, 1] is defined as a subset of R5. Under the canonical identification
represented on the right-hand side of Figure 3.2.1, the last coordinate of Ms,t × [0, 1] can no longer be
interpreted as the height in the picture, but rather as a parametrization of the thickness of the cylinder.
In particular, Ms,t × {0} corresponds to the union of top, back, and bottom face, while Ms,t × {1}
corresponds to the intersection between the front face and the strip R3 × [0.1, 0.9].

×{1}

×{0}

[0, 1]2

[0, 1]4

×{0}× [0, 1]

× [0.9, 1]

[0, 0.1]

Mt

×

Ms

Mt

Ms

Figure 3.2.1. Canonical realization of Ms,t and Ms,t × [0, 1] in R4.

We observe that Ms,t × [0, 1] consists of [0, 1]4 with s + t 4-dimensional 1-handles attached to it, s
on the bottom part of the front face [0, 1]2 ×{1}× [0, 1] and t on the top part of the same front face (see
Figure 3.2.1).

Any 4-dimensional 2-handlebody W = W0 ∪m
i=1 H

1
i ∪n

j=1 H
2
j has a Kirby tangle representation,

obtained in the following way. Assuming that both of the attaching balls of a 1-handle H1
i are contained

in a local chart Ai
∼= R3 of ∂+W0, we can think of H1

i as the result of removing fromW0 a complementary
2-handle living inside a collar of Ai inW0, whose attaching map into Ai is determined by a trivially framed
unknot Ui ⊂ Ai. A dotted unframed version of the unknot Ui, together with a spanning disk Di ⊂ Ai of
it, is usually taken to represent H1

i in the so called dot notation.
Once the dot notation is used for all the 1-handles, with the disks Di taken to be pairwise disjoint,

also the framed link determining the 2-handles can be completely drawn in ∂+W0, instead of ∂+W1, with
each transversal intersection between a framed component and a disk Di corresponding to a passage of
that component through the 1-handle H1

i . In this way, all the picture is contained in ∂W0, and isotoping
it in ∂W0 corresponds to isotoping the attaching maps of the handles as said above.

Then, by using the dot notation for such 1-handles, the handlebody structure of any oriented 4-
dimensional relative 2-handlebody W built on Ms,t can be described by drawing the attaching data of
the handles directly on the front face of [0, 1]4. In particular, this makes the notion of natural framing
(represented by an integer) well-defined.

At this point, by adopting the dot notation also for the 1-handles of W , and by projecting to [0, 1]2,
we get a Kirby tangle representation of W as in Figure 3.2.2.

Kirby diagram

H1
1 H1

2

H1
1 H1

2

H1
s

H1
t

Figure 3.2.2. The Kirby tangle of a relative handlebody built on Ms,t.
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Here, each of the open undotted components appearing at the top and bottom stands for “half of
a 2-handle” connecting a 1-handle of Ms,t × [0, 1], denoted by a dotted unknot as if it were a 1-handle
of W , to the corresponding 1-handle of Ms,t. Moreover, we can assume all the undotted components,
including the open ones, are endowed with the blackboard framing, since any framing can be reduced to
the blackboard one by adding some positive or negative kinks.

We observe that, in such a Kirby tangle, an operation of type (b) in Definition 3.2.2 can be realized
by adding/deleting the dotted and undotted components corresponding to the 1-handle and 2-handle
in question, respectively (as in Definition 3.1.2 (c)). On the other hand, an operation of type (c) in
the Definition 3.2.2 can be realized by replacing the undotted component representing the 2-handle to
be slided by its band connected sum with a parallel copy of the undotted component representing the
2-handle over which the slide is performed (as in Definition 3.1.2 (d)).

3.3. The categories 4HB and 4KT

We start by observing that 2-equivalence classes of oriented 4-dimensional relative 2-handlebodies
built over the 3-manifolds Ms,t with s, t ⩾ 0 form a strict monoidal category 4HB and then we describe
the diagrammatic counterpart of such category, namely the monoidal category 4KT, whose morphisms
are 2-equivalence classes of admissible Kirby tangles.

Definition 3.3.1. We denote by 4HB the strict monoidal category whose objects are connected
oriented 3-dimensional 1-handlebodies Ms for s ⩾ 0, and whose morphisms from Ms to Mt are 2-
equivalence classes of oriented 4-dimensional relative 2-handlebodies built on Ms,t of the form described
in Subsection 3.2.

The composition of two morphisms W = (W,Ms,t) and W ′ = (W ′,Ms′,t′) in 4HB with t = s′ is
obtained by a taking their vertical juxtaposition, with W ′ on top of W , by gluing the two morphisms
(identifying canonically the target of the first with the source of the second), and then by rescaling by a
factor 1/2, that is,

W ′ ◦W ∼= (W ∪Mt×{1}=Ms′×{0}W
′,Ms,t′),

with Ms,t′ canonically contained in Ms,t ∪Mt×{1}=Ms′×{0} Ms′,t′ , and with handlebody decomposition
consisting of all the handles of W and W ′ plus the 1-handles deriving from the thickening of Mt =Ms′ .

The tensor product, denoted by ♮, is given by horizontal juxtaposition, from left to right. For two
objects Ms and Ms′ it corresponds to the boundary connected sum Ms ♮ Ms′ , which is canonically
identified with Ms+s′ , while for two morphisms W = (W,Ms,t) and W

′ = (W ′,Ms′,t′) it corresponds to
the boundary connected sum of pairs, that is,

W ♮W ′ ∼= (W ♮W ′,Ms,t ♮ Ms′,t′
∼=Ms+s′,t+t′),

with Ms+s′,t+t′ canonically identified to Ms,t ♮Ms′,t′ , and handlebody decomposition consisting of all the
handles of W and W ′.

For each s ⩾ 0, the identity idMs is represented by the productMs×[0, 1] with the natural handlebody
decomposition. In particular, id1 =M0 × [0, 1], since 1 =M0.

Remark 3.3.2. The category 4HB is the skeleton of a category whose objects are arbitrary connected
oriented 3-dimensional 1-handlebodies. It is convenient however to restrict our attention to the standard
models for objects we are considering here, as this allows us to define a braided monoidal structure on
4HB.

Now, we define admissible Kirby tangles, which are Kirby tangles that actually represent relative
2-handlebodies built on Ms,t for s, t ⩾ 0, like the one in Figure 3.2.2.

Definition 3.3.3. A Kirby tangle from Ek to Eℓ as in Definition 3.1.1 is said to be admissible if
the following properties hold:

(a) both k and ℓ are even, say k = 2s and ℓ = 2t;
(b) the open components of the undotted tangle consist of s arcs A1,0, A2,0, . . . , As,0 such that the

endpoints of Ai,0 are (e2s,2i−1, 0) and (e2s,2i, 0) in E2s × {0} for each i = 1, 2, . . . , s, and t arcs
A1,1, A2,1, . . . , At,1 such that the endpoints of Aj,1 are (e2t,2j−1, 1) and (e2t,2j , 1) in E2t × {1} for
each j = 1, 2, . . . , t.

In particular, in an admissible Kirby tangle, no undotted arc connects a point at level 0 to one at level 1
(compare with [MP92, KL01]). Two admissible Kirby tangles are 2-equivalent if they are 2-equivalent as
Kirby tangles.
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Proposition 3.3.4. 2-equivalence classes of admissible Kirby tangles form a category 4KT whose
objects are the sets E2s with s ⩾ 0, and whose morphisms from E2s to E2t are 2-equivalence classes of
admissible Kirby tangles. The composition in 4KT is induced by the one in KT (see Definition 3.1.3),
while the identity morphism ids of E2s is defined inductively as follows: id0 is the empty diagram, id1 is
the first diagram in Figure 3.3.1, and ids = id1 ⊔ ids−1 for any s > 1.

4KT has a braided (strict) monoidal structure whose tensor product is induced by the one of KT
(see Definition 3.1.3), ans whose tensor unit is 1 = E0; the braiding isomorphisms c1,1 = c : E4 → E4

and c−11,1 = c−1 : E4 → E4 are presented in Figure 3.3.1, while cs,s′ : E2(s+s′) → E2(s+s′) for s + s′ > 2

are obtained inductively using the relations in Definition 2.1.2 (see Table 2.1.2).

cid1 c−1

Figure 3.3.1. Identity and braiding morphisms in 4KT.

Proof. We only need to show that ids are indeed identity morphisms. In other words, for any admissible
Kirby tangle T from E2s to E2t, both T ◦ ids and idt ◦ T are 2-equivalent to T . To see this, it is enough
to observe that in T ◦ ids the upper undotted components of ids get closed and we can slide the lower
open components over the closed ones and then cancel them with the dotted components; a symmetric
argument works for the top part of idt ◦ T . □

Remark 3.3.5. We observe that Kirby tangles which describe oriented 4-dimensional relative 2-han-
dlebodies, as depicted in Figure 3.2.2, are always admissible, and vice-versa, up to 2-equivalence, every
admissible Kirby tangle can be arranged in that form, by composing it on the top and on the bottom
with identity morphisms.

Remark 3.3.6. Since 2-equivalence preserves admissibility, morphisms from E2s to E2t in 4KT
form a subset of the morphisms with the same source and target in KT. Therefore, we have a set-
theoretic inclusion of 4KT in KT at both the levels of objects and morphisms, and this inclusion respects
compositions and products. However, the identity of E2s in KT is not represented by an admissible Kirby
tangle for s > 0, and hence it is not a morphism of 4KT, so 4KT is not a subcategory of KT.

Finally, the following proposition is an immediate consequence of the definitions, and in particular
of the fact that 2-equivalence of 4-dimensional relative 2-handlebodies corresponds to 2-equivalence of
admissible Kirby tangles.

Proposition 3.3.7 ([BP11, Proposition 2.3.1]). The map sending any morphism of 4KT given by
the 2-equivalence class of a Kirby tangle T to the morphism of 4HB given by the 2-equivalence class
of the 4-dimensional relative 2-handlebody represented by T defines an equivalence of strict monoidal
categories 4KT ∼= 4HB.

3.4. 3-dimensional relative cobordisms

For any s ⩾ 0, let Fs denote the connected oriented surface of genus s with connected non-empty
boundary, canonically realized in R3 as the front boundary ∂+Ms of the 3-dimensional handlebody
Ms ⊂ R3 considered in Subsection 3.2, given by

∂+Ms = ∂Ms ∖ ∂
(
[0, 1]2 × [0, 1[

)
.

We remark that ∂Fs = (∂[0, 1]2)× {1} ∼= S1 does not depend on s, hence it is the same for every s ⩾ 0.
Then, for any s, t ⩾ 0, we can consider the connected closed surface of genus s+ t given by

Fs,t = ∂Ms,t = (Fs × {0}) ∪ ((∂[0, 1]2)×⊏) ∪ (Ft × {1}) ⊂ R4,

oriented according to the identifications Ft × {1} ∼= Ft and −Fs × {0} ∼= −Fs, where

⊏ = (∂[0, 1]2)∖ ]0, 1[× {1} = ([0, 1]× {0}) ∪ ({0} × [0, 1]) ∪ ([0, 1]× {1})
is a piece-wise linear arc embedded into R2 (notice that (∂[0, 1]2)×⊏ is represented as a pair of horseshoe-
shaped arcs yielding the side boundary of Ms,t in left-hand part of Figure 3.2.1).
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By an oriented 3-dimensional relative cobordism, we mean an oriented cobordism between the com-
pact connected oriented surfaces Fs and Ft which is relative to the common boundary ∂Fs = ∂Ft in the
sense of the following definition.

Definition 3.4.1. An oriented 3-dimensional relative cobordism from Fs to Ft, with s, t ⩾ 0, is a
compact connected oriented 3-manifold M whose boundary coincides with Fs,t, that is, ∂M = Fs,t.

Two relative cobordisms M and M ′ from Fs to Ft are said to be equivalent if there exists a homeo-
morphism h :M →M ′ that coincides with the identity on the common boundary ∂M = ∂M ′ = Fs,t.

According to this definition, if W is an oriented relative 4-dimensional handlebody built on Ms,t,
then its front boundary

∂+W = ∂W ∖ ∂
(
Ms,t × [0, 1[

)

is a relative cobordism from Fs to Ft, since ∂(∂+W ) = Fs,t × {1} can be canonically identified with Fs,t.
In particular, the front boundary

∂+(Ms,t × [0, 1]) =Ms,t × {1}
of the trivial handlebody Ms,t × [0, 1] (with no handles) is a relative cobordism from Fs to Ft that can
be canonically identified with Ms,t. See the left-hand part of Figure 3.4.1 for an “ironed-out” picture
of ∂+(Ms,t × [0, 1]), to be compared with the “horseshoe” version of Ms,t represented in the left-hand
part of Figure 3.2.1. This can be considered as a basic relative cobordism from which any other relative
cobordism between Fs and Ft can be obtained by surgery. Since attaching handles to a 4-dimension-
al relative handlebody induces surgery on its front boundary, this is a immediate consequence of the
following extension of the Lickorish-Rokhlin-Wallace’s theorem about the surgery presentation of closed
3-manifolds (see [KL01]).

1,0A 2,0A As,0

{0}

E2t ×

E2s×

{1}

1,1A 2,1A t,1A

(Ms,t × [0, 1]) ∼= Ms,t

Ft × {1}

Fs × {0}

∂+

Figure 3.4.1. The relative cobordism ∂+(Ms,t × [0, 1]) and the corresponding Kirby tangle.

Proposition 3.4.2. Any 3-dimensional relative cobordism M from Fs to Ft is homeomorphic to
the front boundary ∂+W of a 4-dimensional relative 2-handlebody W built over Ms,t, hence, up to
homeomorphism, it can be obtained by surgery on Ms,t. Moreover, W can be assumed to have only
2-handles, so only 2-surgery is needed to realize M starting from Ms,t.

Similarly, Kirby calculus relating surgery presentations of homeomorphic closed 3-manifolds can be
extended to 3-dimensional relative cobordisms, as stated by the following proposition (see [KL01]).

Proposition 3.4.3. Two oriented 4-dimensional relative 2-handlebodies W and W ′ have equivalent
front boundaries ∂+W and ∂+W

′ (as relative cobordisms) if and only if they are related by a finite
sequence of the operations (a), (b), and (c) in Definition 3.2.2, and of the following further two operations:

(d) replacing a 1-handle by a trivially attached 2-handle and vice-versa (handle trading);
(e) adding/deleting a 2-handle attached along a separate unknot with framing ±1 (blow-up/down).

Moreover, operations (a)–(d) suffice to relate W and W ′ if these have equivalent front boundaries and
the same signature σ(W ) = σ(W ′), since operation (e) is the unique one that changes the signature of
the handlebody by ±1.

In light of the above proposition, operation (d) allows us to replace all the 1-handles in any Kirby
tangle presentation of a 4-dimensional relative 2-handlebodiesW while preserving both the front boundary
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∂W up to homeomorphism and the signature σ(W ). In this way, any surgery presentation of a 3-dimen-
sional relative cobordism can be changed into one consisting of 2-surgeries only, simply by erasing all the
dots from the corresponding Kirby tangle.

We observe that, according to Proposition 3.4.2, any “consistent” family of 3-dimensional relative
cobordisms from Fs to Ft for all s, t ⩾ 0 could be chosen, instead of Ms,t, as the base for the surgery
presentation of any such cobordism. For example, this is the case for the relative cobordisms Ts,t schemat-
ically depicted in Figure 3.4.2, which are obtained by attaching s c1-handles to the bottom face of [0, 1]3,
and removing open tubular neighborhoods of t arcs whose endpoints lie on the top face. Here, the bottom
part of the boundary is canonically identified with Fs, while the blackboard framing of the tangle is used
to determine an identification of the top part of the boundary with Ft.

This alternative choice leads to the top-tangle surgery presentation of 3-dimensional relative cobor-
disms considered in [BD21]. This is an upside-down version of Habiro’s bottom-tangles in handlebodies
(see [Ha05, As11]), to which surgery is applied. The reason for the vertical inversion is that we read
cobordisms from bottom to top, like in [BP11, BD21], while in [Ha05, As11] they are read from top to
bottom.

For the reader convenience, in Figure 3.4.3, we show the top-tangle presentation of the structure mor-
phisms of 3Alg. Here, the thick blackboard framed arcs stand for removed open tubular neighborhoods,
as in Figure 3.4.2, while the thin blackboard framed closed curves stand for 2-surgery. They are obtained
by performing 2-surgery on the top-tangle in Figure 3.4.2, followed by suitable slidings and cancellations.
Observe that most of the cobordisms in the figure can be realized without any 2-surgery, which means
that they embed directly into R3.

3.5. The quotient categories 3Cob and 3KT

We will show that equivalence classes of oriented 3-dimensional relative cobordisms form a monoidal
category 3Cob, which admits a quotient front boundary functor ∂+ : 4HB → 3Cob. This will give rise to
a corresponding quotient functor ∂+ : 4KT → 3KT, once 3Cob is shown to be equivalent to the category
3KT of admissible Kirby tangles up to a suitable front boundary equivalence.

F

t

s

t

Fs

Ts,t

1-handles

blackboard framed arcs

Figure 3.4.2. The relative cobordism Ts,t and its top-tangle diagram.

Λλ τ τ−1 w ev coev w

∆ Sη εid1 c−1 −1c m S

Figure 3.4.3. Top-tangle diagrams corresponding to the Kirby diagrams in Figure 3.3.1.
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Definition 3.5.1. We denote by 3Cob the strict monoidal category whose objects are connected
oriented surfaces (with boundary) Fs for s ⩾ 0, and whose morphisms from Fs to Ft are equivalence
classes of 3-dimensional relative cobordisms from Fs to Ft, as defined in Subsection 3.4.

The composition of two morphisms M from Fs to Ft and M ′ from Fs′ to Ft′ with t = s′ is given
by vertical juxtaposition, with M ′ on top of M , and by rescaling by a factor 1/2, which corresponds to
gluing the two morphisms by canonically identifying the target of the first with the source of the second,
that is,

M ′ ◦M ∼=M ∪Ft×{1}=Fs′×{0}M
′,

with ∂(M ′ ◦M) ∼= Fs,t′ canonically contained in Fs,t ∪Ft×{1}=Fs′×{0} Fs′,t′ .
The tensor product, denoted by ♮, is given by horizontal juxtaposition, from left to right, and it

corresponds to the boundary connected sum for both the objects and the morphisms, with canonical
identifications Fs♮Fs′

∼= Fs+s′ for the product of objects, and Bd(M♮M ′) = BdM#BdM ′ = Fs,t#Fs′,t′
∼=

Fs+s′,t+t′ for the product M ♮M ′ of morphisms M from Fs to Ft and M
′ from Fs′ to Ft′ .

For each s ⩾ 0, the identity idFs
is represented by the product cobordism Fs × [0, 1]. In particular,

id1 = F0 × [0, 1], since 1 = F0.

Remark 3.5.2. The category 3Cob can be understood as the skeleton of a category whose objects
are arbitrary connected oriented surface with connected non-empty boundary. Once again, it is convenient
to work with the standard models for objects we are considering here, as this allows us to define a braided
monoidal structure on 3Cob.

In light Definitions 3.3.1 and 3.5.1, the front boundary operator ∂+ introduced in Subsection 3.4
induces a monoidal functor from 4HB to 3Cob. In fact, we have the following proposition.

Proposition 3.5.3. There is a quotient monoidal functor ∂ : 4HB → 3Cob such that ∂Ms = Fs for
all s ⩾ 0, which sends any morphism of 4HB given by the 2-equivalence class of the relative 2-handlebody
W to the morphism of 3Cob given by the equivalence class of its front boundary ∂+W .

Proof. The claim that ∂+ is well-defined as a monoidal functor immediately follows from the definition
of the front boundary of a 4-dimensional relative 2-handlebody, the “if” part of Proposition 3.4.3, and
the fact that vertical and horizontal juxtaposition of 4-dimensional relative 2-handlebodies restrict to
analogous operations on their front boundaries. Notice that, for all W = (W,Ms,t) and W

′ = (W ′,Ms′,t′)
with t = s′, the front boundary ∂+(W ′◦W ) and the composition ∂+(W

′)◦∂+(W ) differ only by a canonical
collar of the middle surface Ft = Fs′ , and so they are equivalent. On the other hand, the functor ∂+ is
trivially surjective on objects, while Proposition 3.4.2 implies its surjectivity on morphisms. □

Now, based on the front boundary equivalence moves shown Table 3.5.1, which provide a Kirby
tangle interpretation of operations (d) and (e) in Proposition 3.4.3, we can define the category 3KT,
which is the diagrammatic counterpart of 3Cob.

Front boundary equivalence moves for Kirby tangles

1/2-handle trading Positive blow down/up

Table 3.5.1

Definition 3.5.4. Two admissible Kirby tangles are said to be front boundary equivalent if they
are related by a finite sequence of the moves and the operations in Tables 3.1.1 and 3.5.1.

Actually, the relations in Table 3.5.1 imply any 1/2-handle trading and negative blow-up/down, as
specified by the next proposition (compare with [Ki89] and [GS99]).

Proposition 3.5.5 ([BP11, Lemma 5.2.1]). Modulo 1/2-handle cancellation and 2-handle sliding,
any 1/2-handle trading can be reduced to one presented on the left-hand side of Table 3.5.1. Moreover,
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modulo 2-handle sliding and 1/2-handle trading, positive and negative blow-up/down are inverse to one
another.

Definition 3.5.6. We denote by 3KT the quotient category of 4KT with respect to the front bound-
ary equivalence relations presented in Table 3.5.1. Then 3KT inherits the structure of a braided (strict)
monoidal category making the quotient functor ∂ : 4KT → 3KT into a braided monoidal functor.

As an immediate consequence of the above definitions and of Proposition 3.5.5, we have the following
proposition.

Proposition 3.5.7 ([BP11, Proposition 5.2.2]). The maps sending any morphism of 3KT given by
the front boundary equivalence class of a Kirby tangle T to the morphism of 3Cob given by the equivalence
class of the relative cobordism represented by T defines an equivalence of braided monoidal categories
3KT ∼= 3Cob. Furthermore, the following diagram commutes:

4KT 3KT

4HB 3Cob

∂+

∼= ∼=

∂+
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4. Algebraic presentation of 4HB and 3Cob

This section is devoted to the proof of Theorem A, which provides an algebraic presentation of 4HB ∼=
4KT. We start by recalling the definition of the functor Φ : 4Alg → 4KT. Its inverse Φ : 4KT → 4Alg
is constructed in Subsection 4.4, and its independence of many auxiliary choices is shown in subsequent
subsections. A crucial role in the proof is played by a subcategory TAlg and its labeled version MAlg
as well as a natural transformation Θ (Subsection 4.2) and its labeled version ΘL

j (Subsection 4.5). The
proof of Theorem A is given in Subsection 4.7.

4.1. The functor Φ : 4Alg → 4KT

It was first shown in [CY94] that the category 3Cob of 3-dimensional cobordisms contains a braided
Hopf algebra, the punctured torus. It was later shown in [Ke01] that this braided Hopf algebra, together
with a ribbon element and an integral, generates 3Cob, or equivalently the category 3KT of admissible
framed tangles (see also [Ha05] for a similar statement concerning the category of bottom tangles in
handlebodies). We recall here a generalization of these results established in [BP11], where it is proved
that the solid torus in 4HB satisfies axioms (r8) and (r9), and is thus a BP Hopf algebra.

Theorem 4.1.1 ([BP11, Theorem 4.3.1]). There exists a braided monoidal functor Φ : 4Alg → 4KT
that sends H to E2 (see Proposition 3.3.4) and each structure morphism of H to the corresponding Kirby
tangle represented in Figure 4.1.1.

Φ

−11

Φ

Φ Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ

Figure 4.1.1. The functor Φ : 4Alg → 4KT.

Notice that the image of the copairing w is the rotation along a horizontal axis in R3 of the bottom
tangle defining Lyubashenko’s pairing in [Ly94].

For completeness, we present the proof.

Proof of Theorem 4.1.1. We have to check that the images under Φ of the structure morphisms of H
satisfy the axioms of a BP Hopf algebra.

This is easy to check for most of the Hopf algebra axioms and for the integral axioms in Tables 2.4.1
and 2.4.3. In particular, the proof reduces to an isotopy for the braid axioms, and to the removal of
canceling 1/2-pairs for axioms (a4-4 ′), (a6), (a8), (i3), and (i4), while a few handle slides are also
required for axioms (a1), (a2-2 ′), (a3), (a7), (s2-3), (i1), (i2), and (i5).

Axiom (a5) and the first part of axiom (s1-1 ′) are proved in Figures 4.1.2 and 4.1.3 respectively.
The second part of axiom (s1-1 ′) is analogous to the first.

Compatibility with axioms (r3)–(r5) can be easily established, once again, by the removal of canceling
1/2-handle pairs after suitable handle slides. The rest of the ribbon axioms are dealt with in Figures 4.1.4,
4.1.5, 4.1.6, and 4.1.7. Here, in the rightmost diagrams of the last two figures, some removal of canceling
1/2-handle pairs has been performed. □



46 A. BELIAKOVA, I. BOBTCHEVA, M. DE RENZI, AND R. PIERGALLINI

Figure 4.1.2. The definition of Φ is compatible with axiom (a5).

Figure 4.1.3. The definition of Φ is compatible with axiom (s1-1 ′).

Figure 4.1.4. The definition of Φ is compatible with axiom (r6).

Figure 4.1.5. The definition of Φ is compatible with axiom (r7).

Figure 4.1.6. The definition of Φ is compatible with axiom (r8).

Figure 4.1.7. The definition of Φ is compatible with axiom (r9).

We observe that the images under Φ of the evaluation, the coevaluation, and the adjoint action are
equivalent, in 4KT, to the tangles represented in Figure 4.1.8. The proof is straightforward and left to
the reader.
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Figure 4.1.8. Images under Φ of ev, coev, ad, and ad′.

4.2. The subcategory TAlg of 4Alg

In this subsection, we define a monoidal subcategory TAlg of 4Alg whose morphisms are sent by
Φ to a family of special two-level Kirby tangles. TAlg will play an essential role in the definition of the
inverse functor Φ of Φ in Subsection 4.4, where the image of any Kirby tangle in 4KT under Φ will be
defined as some sort of closure of morphisms in TAlg. We will show below that TAlg has some interesting
algebraic properties. In particular, it admits two ribbon structures. Moreover, there exist two families
of morphisms in 4Alg that intertwine all morphisms in TAlg, and whose images under Φ are given by
1-handles which embrace the upper/lower level of the tangle.

We start by introducing in Table 4.2.1 a compact notation for certain decorations (featuring copair-
ings) of the braiding morphisms c±1 of 4Alg. A decoration of a crossing is a wavy line attached to the
two edges which form the crossing, and it is entirely contained in one of the four regions that make up

Crossing decorations

Negative crossing decorations

)(c1

Positive crossing decorations

def

Decorated version of (r9) and (p13)

)(c2

def

)(c3

def

)(c4

def

)(c5

def

)(c6

def

)(c7

def

)(c8

def

)(c9 )(c9

Table 4.2.1
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the complement of the crossing inside a circular neighborhood in the projection plane. In particular, we
have four possible decorations for both positive and negative crossings, and the relations (c1)–(c8) in
Table 4.2.1 define these decorations as morphisms in 4Alg.

Observe that a decoration, which is a wavy line attached to arbitrary edges, doesn’t have a meaning
on its own; it acquires one only in a neighborhood of a crossing, and it has to appear in one of the forms
shown in Table 4.2.1. In particular, to a crossing we can attach at most four decorations. To understand
the meaning of decorations, we observe that the image of c (respectively of c−1) under Φ consists of four
positive (respectively negative) crossings between two double strands (see Figure 4.1.1), and adding a
decoration corresponds to inverting one of these four crossings (see Figure 4.1.7). Notice that inverting all
four of them transforms Φ(c) into Φ(c−1), or the other way round. The algebraic versions of these moves
are the relations shown in the bottom section of Table 4.2.1, which are the representation of axiom (r9)
in Table 2.4.1 and relation (p13) in Table 2.4.6 in terms of decorated crossings. Moreover, these two
relations can be generalized as stated in the following proposition.

Proposition 4.2.1. Any decorated crossing is equivalent to the opposite crossing with complemen-
tary decorations. We will denote by (c9) this general class of relations.

Proof. The statement follows from axiom (r9) in Table 2.4.1 and relation (p13) in Table 2.4.6, by applying
relations (p5-6) in Table 2.4.4. □

We will focus now on studying the properties of the decorated crossings X, X̂, Y , and Ŷ defined
in the top two lines of Figure 4.2.2, which will play an important role in the definition of Φ in the next
subsection.

The decorated crossings X,Y,X and Y

Definitions and images under Φ

Y

X =

=

=

=

Φ

Equivalent forms of

X

Y

̂

̂

)(c4

)(c1

(c4-8)

(c1-7)

)(c10 )(c11 )(c12 )(c13

sym =sym =

Action of sym

and

sym =sym =

Φ

Φ

Φ

X Ŷ ̂

Table 4.2.2
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Lemma 4.2.2. X̂ and Ŷ can be presented in the equivalent forms represented in Table 4.2.2. More-
over, we have the following identities (see Tables 4.2.2 and 4.2.10):

sym(X) = X, sym(Y ) = Y,

sym(X̂) = Ŷ , sym(Ŷ ) = X̂,

Y = X−1, (c14-15)

Ŷ = X̂−1, (c20-21)

Proof. The identities (c14-15) and (c20-21) follow from the properties of the copairing, the adjoint action,
and the antipode, as indicated in Figure 4.2.3, while (c10-11), (c12-13) and the identities involving the
symmetry functor are proved in Figure 4.2.4. □

(p5)(p6) (p1)
(r7)

(p2 ′)
(s6)

(p1)
(r7)

(p2 ′)
(s6)

(d7) (d8)

Figure 4.2.3. Proof of (c14-15) and (c20-21).

X� =

Y� =

(a1   )
(r7)

(a1   )

(s4)
(r7 ′)

(r7 ′)
(c4-8)

(c1-7) (c4-6)

(c1-5))(c9(d1)
(r7)

(d1) )(c9

(s4)
(e5-11)

(e5-11)

(d1 )′

(d1 )′

Figure 4.2.4. Equivalent forms of X̂ and Ŷ .

Remark 4.2.3. The images of X, X̂, Y , and Ŷ under Φ are represented in Figure 4.2.2. Notice that
such images satisfy the following properties.

(a) The intersection of the projection plane with the Kirby tangle coincides with some of the disks
spanned by the 1-handles, and the intersections with such disks divide the tangle of undotted
components, and in particular each open component, into two parts: one which stays above and
one which stays below the projection plane, represented respectively in black and gray.

(b) In the projection plane, the lower arc of each undotted component projects onto the right of the
upper one.

Notice that the images under Φ of ∆, ε, Λ, τ , ev, coev (see Figures 4.1.1 and 4.1.8), and therefore
any composition of these morphisms as well, satisfy properties (a) and (b) as well.

We will now define two families of morphisms Θk and Θ′k, with k ⩾ 0, designed to provide an
algebraic analogue of a dotted component that embraces either the lower (gray) or the upper (black)
strands of a two-level tangle.

Definition 4.2.4. For every k ⩾ 0, the morphism Θk : Hk ⊗H → Hk in 4Alg is recursively defined
by the following identities (compare with Figure 4.2.5):

Θ0 = ε, Θ1 = µ,

Θk = (Θ1 ⊗Θk−1) ◦ (id⊗ ck−1,1 ◦ id) ◦ (idk−1 ⊗∆).
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Define also Θ′k = sym(Θk) : H ⊗Hk → Hk to be the symmetric morphism (see Proposition 2.4.10).
We denote by Θ the collection of morphisms {Θk}k∈N, and similarly by Θ′ the collection {Θ′k}k∈N.

=

=

�

k

k

k

k

k

k

k

kk

k

k

Θk

Θk

k

Φ

Φ

Figure 4.2.5. The morphisms Θk and Θ′
k and their images under Φ, k ⩾ 0.

For every k ⩾ 0, we also introduce the morphisms5

U ′k = Θk ◦ (idk ⊗ Λ) and Uk = Θ′k ◦ (Λ⊗ idk),

see Figure 4.2.6. Notice that their images under Φ satisfy Properties (a) and (b) in Remark 4.2.3 as well.
This motivates the definition of the category TAlg below.

Φ Φ

k

k

k

k

k

=Uk

k

k

k

=Uk
′

Figure 4.2.6. The morphisms Uk and U ′
k and their images under Φ.

Definition 4.2.5. We denote by TAlg the strict monoidal subcategory of 4Alg generated by the

morphisms ∆, ε, Λ, ev, τ ,X, X̂, Y , Ŷ , Uk, and U
′
k defined in Tables 2.2.1, 2.4.1, and 4.2.2, and Figure 4.2.6.

Notice that coev and µ̃ belong to TAlg, since they are compositions of morphisms in TAlg, while the
product µ, the unit η, the antipode S, and the copairing w are not in TAlg.

As an immediate consequence of Lemma 4.2.2 and Definition 4.2.5, we have the following corollary.

Corollary 4.2.6. The subcategory TAlg of 4Alg is invariant under the action of the symmetry
functor sym : 4Alg → 4Alg defined in Proposition 2.4.10.

5Θ′ and U ′ are just auxiliary morphisms which will be used to simplify some proofs, while Θ and U will play an essential
role in the following. This is why we swap the prime in the notation.
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Lemma 4.2.7. If ι : TAlg ↪→ 4Alg denotes the inclusion functor, then Θ : ι⊗H ⇒ ι and Θ′ : H⊗ι⇒ ι
define natural transformations, meaning that, for every morphism F : Hs → Ht in TAlg, we have (see
Figure 4.2.7)

Θt ◦ (F ⊗ id) = F ◦Θs, (t1)

Θ′t ◦ (id⊗ F ) = F ◦Θ′s. (t1 ′)

(t1) (t1 ′)�

F

F

F

FΘt

Θs

Θt

�Θs

t t t t

s s s s

Figure 4.2.7. Naturality of Θ and Θ′.

Proof. According to Corollary 4.2.6, the statement for Θ′ can be derived from the one for Θ by applying
the functor sym. For what concerns Θ, the coassociativity relation (a3) implies that, if the statement is
true for two morphisms, then it is true for their product as well. Therefore, it is enough to show that (t1)
holds whenever F is one of the generating morphisms of TAlg. For F = ∆, ε,Λ, τ , the statement follows
directly from (a5), (a6), (i2 ′), and (r5), while for F = ev, Uk, U

′
k it is shown in Figure 4.2.8. Then, in

the first two lines of Figure 4.2.9, we prove (t1) for F = X, which in turn implies (t1) for F = Y , since,
thanks to Lemma 4.2.2, Y = X−1. Finally, in the last line of Figure 4.2.9, by using (t1) for Y , we prove

the statement for F = X̂, which implies (t1) for F = Ŷ = X̂−1. □

(a2)
(s4)

(a1)

(a1)

(a5)
(a1)
(a5)

(e1) (e1)

(i2)
(i2 )′

(a1)
(s1 )′

Figure 4.2.8. Proof of relation (t1) for F = ev, Uk, U
′
k.
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(a1)
(a1)

(p12)
(p7)

(s4) (a1)

(a1) (a1)

(p1)

(t1)
for Y

)(c8

)(c8

)(c9

)(c9

)(c9

)(c7
)(c7
)(c9

(e5-11)

Figure 4.2.9. Proof of relation (t1) for F = X, X̂.
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Theorem 4.2.8. The relations in Tables 4.2.10 and 4.2.11 are satisfied in TAlg. In particular, TAlg
admits two distinct ribbon structures, in which braiding morphisms (and their inverses) are given by

X,X−1 = Y : H ⊗H → H ⊗H and by X̂, X̂−1 = Ŷ : H ⊗H → H ⊗H, respectively.

)(c25)(c24

Braided ribbon structures on TAlg

)(c22 )(c23)(c20 )(c21

)(c14 )(c15 )(c16 )(c17

)(c19)(c18

2

F

F

F

F

F

F

F

F

The braided ribbon structure induced by X and Y (F any morphism in TAlg)

The braided ribbon structure induced by X and Ŷ ̂ (F any morphism in TAlg)

Table 4.2.10
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Uk Uk

Ut

UsF

F

k

t t

kkk s s

Properties of the morphisms Uk in TAlg

(F any morphism in TAlg)

(u1) (u2)

Table 4.2.11

Proof. The evaluation and coevaluation morphisms of TAlg are induced by the ones of 4Alg. Rela-
tions (c14-15) and (c20-21) have been proved in Lemma 4.2.2. Relations (c16), (c22), and (c23) are
proved (in this order) in Figure 4.2.12, while (c17) follows by symmetry from (c16). Relation (c24)
follows from (d10) and Figure 4.2.13, while relations (c18) and (c25) follow from (t1 ′) and from Fig-
ure 4.2.14. Then, (c19) follows by symmetry from (c18). Relation (u1) is proved in Figure 4.2.15, while
(u2) is a direct consequence of (t1 ′). □

2
(s4)

(s4)

(s3)
(p15 ′)

(s2-3)

(s2) (s2)

(s2)

)(c4

(c10)

(p1)

(c11)

(e5 )′

(e5 )′

(e5 )′

(d10)
(d16)

(d10)
(d15)(d9 )′

Figure 4.2.12. Proof of relations (c16), (c22), and (c23).

(a1)

(r7)
(s4)

(c10)

(d2)

Figure 4.2.13. Proof of relation (c24).
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(a1)

(r7)
(s4)

(p1)

�Θ

)(c4

(r7)

�Θ

(c11) (d2 )′

Figure 4.2.14. Proof of relations (c18) and (c25).

(a1)
(s4)

(s5)

)(i4

Uk Uk

(e1)
(e7)

(e1)
(e7)

Figure 4.2.15. Proof of relation (u1).

4.3. Bi-ascending states of link diagrams

In [BP11], a key ingredient for inverting Φ was the notion of vertically trivial state of a link dia-
gram. In the present more algebraic context, based on the presentation of the category 4KT provided by
Proposition 3.3.4, it seems convenient to replace that notion with the completely diagrammatic notion of
bi-ascending state.

As usual, we represent a link L ⊂ R3 ⊂ R3 ∪ {∞} ∼= S3 by a planar diagram D ⊂ R2 consisting
of the orthogonal projection of the link onto R2, which can be assumed to be self-transversal after a
suitable horizontal (that is, height-preserving) isotopy, together with a crossing state for each double
point, encoding which arc passes over the other. Such a diagram D uniquely determines the link L up
to vertical isotopy. On the other hand, link isotopy can be represented in terms of diagrams by crossing-
preserving isotopy in R2 and Reidemeister moves.

It is well-known that any link diagram D can be transformed into the diagram D′ of a trivial link
by a suitable sequence of crossing changes, that is, by inverting the state of some of its crossings. We say
that D′ is a trivial state of D.

The simplest trivial states of a link diagram D, are given by so-called ascending states (see [Li97]).
Bi-ascending states of D form a larger family of trivial states of D satisfying the following crucial property
(which does not hold for ascending states): any two bi-ascending states of the same knot diagram can be
related by a finite sequence of bi-ascending states, each obtained from the previous by inverting a single
crossing (see Proposition 4.3.2 below). Before defining the notion of bi-ascending diagram, we need to
introduce some terminology.

Given a diagram D of a link L = L1 ∪ · · · ∪ Ln ⊂ R3, where each Li ⊂ L is a component of L,
we write D = D1 ∪ · · · ∪Dn ⊂ R2, with each Di ⊂ D being the subdiagram of D corresponding to Li,
and we refer to each Di ⊂ D as a component of D. Similarly, by an arc A ⊂ D we mean any part of
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D corresponding to the projection to an arc in L (not only the arcs ending at two consecutive under-
crossings, as usual). Moreover, we say that A is an ascending arc with respect to a given orientation if,
at each of its self-crossings, the subarc that comes first passes under the other one.

Definition 4.3.1. A link diagram D is said to be bi-ascending if it is possible to number its com-
ponents D1, . . . , Dn and to choose on each Di an orientation and two distinct points pi and qi away from
the crossings of D in such a way that, if we denote by A±i the two oriented arcs from pi to qi in Di (with
the sign + for the arc whose orientation coincides with the chosen one for Di), the following properties
hold:

(a) Di crosses always over Dj , for every 1 ⩽ i < j ⩽ n;
(b) A+

i crosses always over A−i , for every 1 ⩽ i ⩽ n;
(c) A±i are both ascending arcs, for every 1 ⩽ i ⩽ n.

We note that the crossings of a bi-ascending diagram D, as specified in the definition, are compatible
with a height function which vertically separates the components, and whose restriction to each component
Di has a single local minimum at pi and a single local maximum at qi. Therefore, any bi-ascending diagram
represents a trivial link. In particular, bi-ascending diagrams whose arcs A−i form no crossing coincide
with ascending ones.

In the following, we simply refer to a bi-ascending trivial state of a link diagram D as a bi-ascending
state of D. Given a link diagram D, for any choice of the numbering and orientations of its components
Di and of different non-crossing points pi and qi along each Di, there is a unique bi-ascending state D′ of
D which satisfies the properties in the above definition, taking into account the canonical correspondence
between the components Di of D and the components D′i of D

′. On the other hand, different choices can
lead to the same bi-ascending state.

The next proposition is an analog of [BP11, Proposition 1.1.3] for bi-ascending states of a diagram.

Proposition 4.3.2. Any two bi-ascending states D′ and D′′ of a link diagram D are related by a
finite sequence D(0), D(1), . . . , D(k) of bi-ascending states of D such that D(0) = D′, D(k) = D′′ and,
for every 1 ⩽ i ⩽ k, the state D(i) is obtained from D(i−1) either by changing all the crossings between
two vertically adjacent components, or by changing a single self-crossing of one component. Moreover,
in the second case, the singular diagram between D(i−1) and D(i) (whose changing crossing has been
replaced by a singular point) is a bi-ascending diagram of a trivial singular link. Namely, its components
are vertically separated, meaning that they satisfy the property (a) of Definition 4.3.1, and are all bi-
ascending diagrams of unknots but one, which is the 1-point union of two vertically separated bi-ascending
diagrams of unknots.

Proof. Changing all the crossings between two vertically adjacent components in a bi-ascending state
of D has the effect of transposing those components. Then, by iterating this kind of operation, we can
permute components as we want. Therefore, we are left to address the case when D is a knot diagram.

Let D′ ⊂ R2 be a bi-ascending state of a knot diagram D. Then, the crossings of D′ are uniquely
determined by the choice of an orientation on D and two distinct non-crossing points p and q splitting D
into two ascending arcs A± from p to q such that A+ is positively oriented and crosses always over A−.

Let us fix for the moment the orientation, and see what happens to the induced bi-ascending state D′

when we move one of the points p and q along D while keeping it distinct from the other. The crossings
of D′ do not change until the moving point passes through a crossing of D, in which case we have one of
the four situations depicted in Figure 4.3.1, depending on which is the moving point (p on the left-hand
side of the figure, q on the right-hand side) and what is the relative position of the other point along the
diagram. As a simple inspection shows, in the two top cases only the crossing which is passed through
by the moving point changes in D′′, while no crossing change occurs in the two bottom cases.

This way, we can relate any two bi-ascending states of D determined by the same orientation and by
different choices of the points p and q. In particular, we can relate any bi-ascending state to an ascending
one.

Concerning the orientation of D, it is enough to observe that its inversion does not affect the induced
state D′ when this is an ascending state. In fact, in this case the interchange of the two arcs A+ and
A− is irrelevant, since there is no crossing between them, and hence property (b) in Definition 4.3.1 is
vacuous.

For the second part of the statement, let D′ be a bi-ascending state of D, and suppose that we pass
from D′ to a bi-ascending state D′′ of D that differs from D′ by a single self-crossing change of a single
component. We can focus on the changing component and forget the others, that is, we can assume that
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q

′ ′′D D

p

′ ′′D D

p

p

p

q q

q q

A+

A+ A+ A

A

q

A+

A−

A−

A− A A+ +

−

p

A−

A+

− A−

q

A−

q p

A+

p p

Figure 4.3.1. Letting p or q pass through a single crossing of D.

D is a knot diagram. Moreover, according to Definition 4.3.2 and to the proof of the first part of the
statement above, we can also assume that D′ and D′′ are bi-ascending states of D determined by the
same orientation and by different choices for the points p and q, and that they are related as in the top
line of Figure 4.3.1.

In both cases, once the changing crossing is replaced by a singular point s, the resulting loops are
easily seen to be bi-ascending, with one always crossing over the other. Namely, if the moving point is
p, then the upper loop is bi-ascending and determined by s and q with the inherited orientation, while
the lower one is ascending and starting from s with the opposite orientation. On the other hand, if the
moving point is q, then the upper loop is ascending and starting from s with the inherited orientation,
while the lower one is bi-ascending and determined by p and s with the opposite orientation. □

4.4. Definition of the inverse functor Φ : 4KT → 4Alg

Given a Kirby tangle T : E2s → E2t in 4KT, we will now explain how to construct a morphism
Φ(T ) : Hs → Ht in 4Alg whose image Φ(Φ(T )) under the functor Φ is the 2-equivalence class of T . The
construction depends on some choices, but in the next subsections we will show that different choices
lead to equivalent morphisms in 4Alg, so that Φ(T ) depends only on the Kirby tangle T up to 2-defor-
mations. Moreover, the assignment respects compositions and identities, therefore it defines a functor
Φ : 4KT → 4Alg.

We represent T by a strictly regular planar diagram, which is a composition of tensor products of
elementary diagrams in Table 3.1.1, and, up to composing it on the top and on the bottom with identity
morphisms, we will assume that T is of the form represented in the leftmost diagram of Figure 4.4.1 (see

T

t

s

1

−1 −1 −1

1 1

Tα

E2t

E2s

E2t

E2s

′FL ,α

ai1 ai2 ain

nαi1 αi2 αi

Figure 4.4.1. Outline of the construction of Φ(T ).
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Proposition 3.1.5 and Remark 3.3.5). Let B1, . . . , Bm ⊂ ]0, 1[
2
be the planar projections of the disjoint

disks spanned by the dotted unknots U1, . . . , Um of T , and let L be the strictly regular planar subdiagram
which represents the blackboard framed link formed by the closed undotted components of T . Then, the
construction of the morphism Φ(T ) is achieved by the following steps, illustrated in Figure 1.1.3):

(1) Choose a numbering L = L1∪ · · · ∪Ln of the components of L and, on each component Li, choose
both an orientation and a pair of points pi and qi inducing a bi-ascending state L′ = L′1 ∪ · · · ∪L′n
of L. In particular, we require that L′i crosses always over L

′
j for any i < j, and that the positively

oriented ascending arc determined by pi and qi crosses over the negatively oriented one (see
Definition 4.3.1). Mark with small gray disks C1, . . . , Cℓ the crossings of L that have to be inverted
in order to get L′ (see Figure 4.4.2).

Li

Lj

Ck Ck

Lj
′

Li
′

Figure 4.4.2. The disk Ck and the diagrams D and D′ at a changing crossing, i ⩽ j.

(2) Fix n points a1, a2, . . . , an ∈ [0, 1] × {0.1} ⊂ [0, 1]2 on the bottom right of the projection plane
(their numbering is not required to respect the natural order of the segment [0, 1] × {0.1}), and
choose n embedded arcs αi : [0, 1] → [0, 1]2 such that αi(0) = ai and αi(1) = bi ∈ Li. Each
αi is required to form regular crossings both with L and among themselves, with crossing states
that can be arbitrarily chosen (see the middle diagram in Figure 4.4.1). Assume also that each
αi avoids the crossings of L, the points pi and qi, the disks B1, . . . , Bm, and local maxima and
minima of L in the plane diagram. Since L′i is a bi-ascending state of Li, the points pi, qi, and bi
divide Li in three arcs Li = L1

i ∪ L2
i ∪ L3

i , numbered in such a way that either bi = L1
i ∩ L2

i or

bi = L2
i ∩L3

i and that, if we denote by (Lj
i )
′ the corresponding arcs of L′, then (Lj

i )
′ crosses always

over (Lk
i )
′ if j < k (see Figure 4.4.3, where the arrows indicate the preferred orientation of the

bi-ascending state of Li). For every 1 ⩽ i ⩽ n, set Li,α = Li ∪αi and L
′
i,α = L′i ∪αi. Furthermore,

set α = {αi}ni=1, Lα = L1,α ∪ · · · ∪ Ln,α, and L
′
α = L′1,α ∪ · · · ∪ L′n,α. Then, for every 1 ⩽ i ⩽ n,

mark with small gray disks as above the crossings formed by the arc αi and by L in which one of
the following things happen:

(a) αi crosses either under Lj,α for i < j or over Lj,α for i > j;
(b) αi crosses either under L

2
i ∪ L3

i or over L1
i with bi = L1

i ∩ L2
i ;

(c) αi crosses either under L
3
i or over L1

i ∪ L2
i with bi = L2

i ∩ L3
i .

qi

pi

L1
i

L3
i

L2
i

bi

qi

pi

L3
i

L2
i

L1
i

bi

Figure 4.4.3. Possible subdivisions of Li = L1
i ∪ L2

i ∪ L3
i .

(3) Replace each elementary diagram of Lα as indicated by the arrows on the left-hand side of Fig-
ures 4.4.4 and 4.4.5, where fi = 1−wr(L′i) with wr(L′i) denoting the algebraic sum of the signs of
all crossings in L′i. In particular, the replacement for a crossing depends on whether it is marked
as a changing crossing or not, the image being X or Y in the case of a unmarked crossing, and

X̂ or Ŷ otherwise. Replace also the dotted components of T and the identity morphisms lying
outside of the Tα-labeled box as prescribed by the arrows on the left-hand side of Figure 4.4.6.
Then Φ(T ) = ΦL′,α(T ) is defined as (see the right-hand side of Figure 4.4.1)

Φ(T ) = ΦL′,α(T ) =W⊗t ◦ FL′,α ◦
(
W⊗s ⊗ η⊗n

)
,
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where W = µ ◦ (τ−1 ⊗ S), where W = (µ ⊗ τ) ◦ (id ⊗ coev) (see Figure 4.4.6), and where the
morphism FL′,α belongs to the subcategory TAlg of 4Alg.

The notation ΦL′,α(T ) highlights the choice of the bi-ascending state L′ and of the arcs αi for
1 ⩽ i ⩽ n, as required by the construction. In Subsection 4.6 (see Propositions 4.6.2, 4.6.3, 4.6.6,
and 4.6.7) we will show that the 2-equivalence class of ΦL′,α(T ) is independent of such choices,
and that it only depends on the 2-equivalence class of T . This will justify the notation Φ(T ).

=V

V =

−1

1

fi

fi fi

−1

Libi

fi

−1

a

αi

i

Lα Φ(Φ(T ))Φ

Φ

(T )

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Figure 4.4.4. Definition of Φ(T ) and its image under Φ – Part 1.

X

Y

Y

̂

̂

X =

=

=

=

�Lα Lα Φ(Φ(T ))Φ

Φ

(T )

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Figure 4.4.5. Definition of Φ(T ) and its image under Φ – Part 2.
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−1

1

Φ(T Φ(T ))Φ(T )

=Uk

kk

k k kk

k k

=W

W =
Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Figure 4.4.6. Definition of Φ(T ) and its image under Φ – Part 3 (k ⩾ 1).

Later, in Proposition 4.6.2, we will show that the conditions imposed in Step (2) on the arcs αi for
1 ⩽ i ⩽ n can be weakened to exclude (b) and (c). Nevertheless, considering for now only arcs αi that
satisfy those two conditions as well makes it much easier to see that Φ is the inverse of Φ in the next
proposition.

Proposition 4.4.1. Φ(Φ(T )) = T for every Kirby tangle T in 4KT.

Proof. Before applying the functor Φ, we modify Φ(T ) by sliding the coproduct ∆ that appears in the
image of the attaching point of each αi (see the last line in Figure 4.4.4) along Φ(αi) until it reaches
the unit at its end. Then, we apply (a7) in Table 2.2.1 to split Φ(αi) into two parallel arcs (see the
first two steps in Figure 4.4.7). We recall that sliding along coev and ev morphisms transforms ∆ in µ̃
and vice-versa (see (q2) and (q3) in Table 2.5.1 and the first two lines of Figure 2.5.2), while sliding ∆
through Uk and through the decorated crossings uses (u2), (c18), (c19), (c24), and (c25) in Table 4.2.10.
We observe that, in this last case, the crossing splits into two crossings of the same type. Therefore, the
resulting morphism FL′,β still lies in the subcategory TAlg of 4Alg.

Since Φ is a monoidal functor, the morphism Φ(Φ(T )) is given by the corresponding composition
of tensor products of the diagrams represented on the right-hand side of Figures 4.4.4, 4.4.5, and 4.4.6,
where the rightmost diagrams are obtained from the previous ones by 2-handle slides and 1/2-handle
cancellations.

Comparing T and Φ(Φ(T )), we observe the following.
⋄ Each component Li has been isotoped by pulling a small arc in a neighborhood of bi all the

way down to the bottom-right part of the diagram through a narrow blackboard-parallel band βi
obtained by doubling αi. Denote by Lβ = Lβ,1∪· · ·∪Lβ,n the resulting link diagram. Observe that,
in Step (2) above, the signed crossings between αi and Lα have been chosen in such a way that,
by inverting both them and the signed crossings identified in Step (1), we obtain a bi-ascending
state L′β = L′β,1 ∪ · · · ∪L′β,n of Lβ with respect to the same choice of numbering, orientations, and
points pi and qi.

⋄ The link Lβ , represented in black in the rightmost diagrams in Figures 4.4.4, 4.4.5, and 4.4.6, has
been “doubled” by a copy of the trivial link, represented by the bi-ascending diagram L′β in gray,
which lies below the original Kirby tangle T .
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Figure 4.4.7. Φ ◦ Φ(T ).

⋄ Each component L′β,i is connected to the corresponding component Lβ,i by a band γi, shown in
gray in the bottom-right part of Figure 4.4.7, that merge the ends of the two copies of βi in Lβ,i

and L′β,i.
A three-dimensional view of Φ(Φ(T )) in the spacial case when the points ai are ordered from left to right
is presented in Figure 4.4.8. Therefore, the Kirby tangle Φ(Φ(T )) can be isotoped to the original one T by
first contracting all the unknots of L′β,i, and then retracting the corresponding bands βi one by one. □

γ1 γ2 γnLβ,1
′

β,nL′

Tβ

Lβ,2
′

Figure 4.4.8. Three-dimensional view of Φ(Φ(T )) in the spacial case when the points ai are
ordered from left to right. Notice that, for levels from 1 to n, there is either a single cap on
the top (like for level n in this example), or a single cup on the bottom (like for level 1 in
this example), or nothing at all (like for level 2 in this example), depending on whether the
corresponding undotted component of the original tangle T , before composing with identities,
was either open on the top, or open on the bottom, or closed, respectively.
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4.5. The category MAlg

As we have seen in the previous subsection, Φ(T ) encodes algebraically a multiple-level Kirby tangle,
and in order to prove that Φ is a well-defined functor, we need to develop suitable algebraic tools that
allow us to work with such structures. The main idea is to consider a category MAlg that is similar
to TAlg, but whose objects and morphisms carry labels. In other words, objects are tensor products
Hi = Hi1 ⊗ Hi2 ⊗ . . . ⊗ Hik with iℓ ⩾ 0 for 0 ⩽ ℓ ⩽ k, while morphisms are labeled versions of the
corresponding morphisms of 4Alg. The images of the morphisms of MAlg under Φ satisfy the same
conditions (a) and (b) in Remark 4.2.3 as morphisms of TAlg, but, in addition, the lower (grey) arc of
each undotted component of label i stays above the lower (grey) arc of each undotted component of label
j > i; in other words, labels denote the “depth” of those arcs in the corresponding Kirby tangle.

Here is the formal definition.

Definition 4.5.1. We denote by MAlgF the strict monoidal category freely generated by objects
Hi for i ⩾ 0 and by morphisms

evi : Hi ⊗Hi → 1 for i ⩾ 1,

∆i : 1→ Hi ⊗Hi for i ⩾ 1,

εi : Hi → 1 for i ⩾ 1,

Λi : 1→ Hi for i ⩾ 1,

τi : Hi → Hi for i ⩾ 1,

Xi,j , Ŷi,j : Hi ⊗Hj → Hj ⊗Hi for 1 ⩽ i ⩽ j,

X̂i,j , Yi,j : Hi ⊗Hj → Hj ⊗Hi for i ⩾ j ⩾ 1,

Wi : H0 → Hi ⊗Hi for i ⩾ 1,

Wi : Hi ⊗Hi → H0 for i ⩾ 1,

Ui = Ui1,...,ik : Hi1 ⊗ . . .⊗Hik → Hi1 ⊗ . . .⊗Hik for k ⩾ 1 and i1, . . . , ik ⩾ 1

Let F : MAlgF → 4Alg denote the natural forgetful functor that discards labels; in particular,
F(Hi) = H for every i ⩾ 0, F(Ui1,...,ik) = Uk, and each of the remaining generating morphisms is sent
by F to the morphism of 4Alg carrying the same name without indices. Then, we denote by MAlg the
quotient category MAlgF/ kerF.

The diagrammatic notation for the morphisms in the image of F is introduced in Figure 4.5.1. In
particular, we represent F(Fi,j) by a box that contains in its lower (respectively upper) part the labels

of the string in the source (respectively target) of Fi,j .

F(Fi,j)
i1 i2 is

j1 j2 jt

Figure 4.5.1. Diagrammatic notation for F(Fi,j), where i = (i1, . . . , is) and j = (j1, . . . , jt).

We will now define a family of natural transformations ΘL
k for k ⩾ 1 designed to provide the algebraic

analogue of a dotted component that embraces the kth level, while passing below the ith level, for
0 ⩽ i ⩽ k − 1, and above the jth level, for j ⩾ k + 1.

Definition 4.5.2. For all k ⩾ 1 and i = (i1, i2, . . . , iℓ), with ℓ ⩾ 0 and ih ⩾ 0 for every 1 ⩽ h ⩽ ℓ,
the morphisms γi,k : Hℓ ⊗H → H ⊗Hℓ and ΘL

i,k : Hℓ ⊗H → Hℓ of 4Alg are recursively defined by the
following identities:

γ∅,k = id, ΘL
∅,k = ε,

γ(i),k =

{
c if i ⩽ k,

X̂ if i > k,
ΘL

(i),k =

{
µ if i = k,

id⊗ ε if i ̸= k,

γi,k = (γ(i1),k ⊗ idℓ−1) ◦ (id⊗ γ(i2,...,iℓ),k),

ΘL
i,k = (ΘL

(i1),k
⊗ΘL

(i2,...,iℓ),k
) ◦ (id⊗ γ(i2,...,iℓ),k ⊗ id) ◦ (idℓ ⊗∆).
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We denote by ΘL
k the collection of morphisms {ΘL

i,k | i ∈ Nℓ, ℓ ∈ N}.

Proposition 4.5.3. If F : MAlg → 4Alg denotes the forgetful functor that discards labels, then
ΘL

k : F ⊗H ⇒ F defines a natural transformation, meaning that, for every morphism Fi,j : Hi → Hj in

MAlg, we have (see Figure 4.5.2):

ΘL
j,k ◦ (F(Fi,j)⊗ id) = F(Fi,j) ◦ΘL

i,k. (t2)

F(Fi,j)
i1 i2 is

j1 j2 jt

ΘL
j,k

F(Fi,j)
i1 i2 is

j1 j2 jt

ΘL
i,k

(t2)

Figure 4.5.2. Naturality of ΘL
k .

Before proceeding to the proof of Proposition 4.5.3, in Figure 4.5.3 we present a specific example
of the natural transformation ΘL

i,k : F(Hi) ⊗ H → F(Hi) and its image under the functor Φ. Notice

that, since ΘL
k is a natural transformation between functors with source MAlg and target 4Alg, it is a

collection of morphisms in the target category (which are unlabeled), one for every object in the source
category (which are labeled). In other words, ΘL

i,k does not really carry labels, but its definition depends
on the labeled object Hi. Therefore, the labels attached to the morphisms represented in Figure 4.5.3
and below indicate that these morphisms are in the image of F, but keeping track of labels in pictures
will allow us to understand which form of ΘL

k we need to use.

Φ

2 1 3 4 3

2 1 3 4 2 3

2 0 2 0 1 0 3 0 2

0 2 0 1 0 3 0 2

0 4

0 4

0 3

0 3

0 2 0 1 0 3 0 2

0 2 0 1

0 4

0 40 3

0 3

0 30 2

Figure 4.5.3. The morphism ΘL
i,k : F(Hi) ⊗ H → F(Hi) for i = (2, 1, 3, 4, 2, 3) and k = 2,

and its image under the functor Φ : 4Alg → 4KT.

Lemma 4.5.4. If i = (i1, . . . , ih, ih+1, . . . , iℓ) with ℓ ⩾ 1 and 1 ⩽ h < ℓ, then

ΘL
i,k = (ΘL

(i1,...,ih),k
⊗ΘL

(ih+1,...,iℓ),k
) ◦ (idh ⊗ γ(ih+1,...,iℓ),k ⊗ id) ◦ (idℓ ⊗∆).

Proof. For h = 1 and for any ℓ ⩾ 1, the statement is true by definition of ΘL
i,k. Then the claim follows

by induction on h. The proof of the inductive step is presented in Figure 4.5.4, where the first step
follows from the definition of ΘL

i,k, while the second step follows from the inductive hypothesis and the

decomposition of γ(i2,...,iℓ),k as (γ(i2,...,ih),k ⊗ idℓ−h) ◦ (idh−1 ⊗ γ(ih+1,...,iℓ),k). Then, for the third step, we
apply the coassociativity axiom (a3) to collect together the rightmost strands in the sources of the two
copies of γ(ih+1,...,iℓ),k, and use (c18-24) to push the resulting ∆ past them. Finally, we apply once more

the defining relation of ΘL
(i1,...,ih),k

. □
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ΘL
i1,k

L

ΘL
(i1,...,i�),k

γ(i2,...,i�),k

h
Θ(i +1,...,i�),k

h(i +1,...,i�),k
ΘL

(i2,...,i�),k

ΘL
(i2,...,ih),k

ΘL
i1,k

ΘL
i1,k

(i2,...,ih),k

L
h

Θ(i +1,...,i�),k
ΘL

(i2,...,ih),k
ΘL

(i1,...,ih),k
L

h
Θ(i +1,...,i�),k

γ

(i2,...,ih),kγ

γ

h(i +1,...,i�),kγ

h(i +1,...,i�),k

(a3)
)(c18-24

γ

h(i +1,...,i�),kγ

Figure 4.5.4. Proof of the inductive step of Lemma 4.5.4.

Proof of Proposition 4.5.3. We will first prove the statement in the case where Fi,j is a generating

morphism of MAlg. We observe that (t2) holds trivially if none of the edges of Fi,j is labeled by k, while

it follows from (t1) in Proposition 4.2.7 if all incoming and outgoing edges of Fi,j are labeled by k, since

in this case both ΘL
i,k and ΘL

j,k coincide with Θk. Moreover, the proof for Wi is identical to the proof of

(t1) for V in Figure 4.2.9, while (t2) for Wi follows directly by applying the bialgebra axiom (a5) and
the property of the integral element (i2 ′). On the other hand, when Fi,i = Ui, then (t2) follows directly
from the associativity axiom (a1).

In order to complete the proof of (t2) for the generating morphisms of MAlg, it remains to consider

the case where Fi,j is a decorated crossing, meaning one of the morphisms Xi,j , Yi,j , X̂i,j , Ŷi,j , with exactly

one of the indices i or j equal to k. Since, according to Lemma 4.2.2, we have Yi,j = X−1j,i and Ŷi,j = X̂−1j,i ,

it is enough to prove the statement for Xi,k and X̂k,i if i < k, and for X̂i,k and Xk,i if i > k. This is done
in Figure 4.5.5.

i > k

(a1) (a1)

i

i

k

k

i

i < k

i

k

k

k

k

i

i

i

i

k

k

k

k

i

i

k

k

i

i

k

k

i

i

i

i

k

k

(a1)

)(c4
(c14)

(a1)
)(c5

(c9) (c9)

(c9)(c24)

Figure 4.5.5. Naturality of ΘL
k with respect to decorated crossings with mixed labels.

Now, by Lemma 4.5.4, the claim will follow for every morphism Fi,j : Hi → Hj in MAlg if we can

show that

γj,k ◦ (F(Fi,j)⊗ id) = (id⊗F(Fi,j)) ◦ γi,k. (g1)

every time Fi,j is a generating morphism of MAlg. Observe that, if no label of Fi,j is strictly greater than

k, then (g1) follows from the naturality of the braiding. On the other hand, if all of its labels are strictly
greater than k, then it follows from (c24-25).
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Therefore, we are left to prove (g1) for morphisms Fi,j in which some of the labels are strictly greater

than k, and some are not. In this case, Fi,j is either a decorated crossing, or Wi or Wi for i > k. For

what concerns decorated crossings, we observe that, thanks to Lemma 4.2.2 once again, it is enough to

prove (g1) for Xi,j and X̂j,i with i ⩽ k < j. This is done in Figure 4.5.6. The proofs for Wi and Wi with
i > k is shown in Figure 4.5.7. □

(a1) (a1)
j

j

i

i

i

i

j

j

i

i

j

j

j

j

i

i
(c9) (c9)

Figure 4.5.6. Naturality of γi,k with respect to decorated crossings with i ⩽ k < j.

(a1) (c25)
0

ii

0

ii

′)(a2
(s7)
(p2)

(s1 ′)

(a1)

(s5)
(s4)(r7 ′)

i

0

i

i

0

i

(d4)

(d3)

Figure 4.5.7. Naturality of γi,k with respect to the morphisms F(Wi) and F(Wi) with i > k.

Finally, we will define a family of natural transformations Θ̂L
k for k ⩾ 0 designed to provide the

algebraic analogue of a dotted component that embraces the kth level, while passing below the ithe level,
for 1 ⩽ i ⩽ k − 1, and above the jth level, for k + 1 ⩽ j ⩽ n, composed with a positive double braiding
between the strands of the kth and (k + 1)st level (see Figure 4.5.8).

Definition 4.5.5. For all k ⩾ 1 and i = (i1, i2, . . . , iℓ), with ℓ ⩾ 0 and ih ⩾ 0 for every 1 ⩽ h ⩽ ℓ,

the morphisms γ̂i,k : Hℓ ⊗H → H ⊗Hℓ and Θ̂L
i,k : Hℓ ⊗H → Hℓ in 4Alg are recursively defined by the

following identities:

γ̂∅,k = id, Θ̂L
∅,k = ε,

γ̂(i),k =





c if i ⩽ k,

X if i = k + 1,

X̂ if i > k + 1,

Θ̂L
(i),k =

{
µ if i = k,

id⊗ ε if i ̸= k,

γ̂i,k = (γ̂(i1),k ⊗ idℓ−1) ◦ (id⊗ γ̂(i2,...,iℓ),k),

Θ̂L
i,k = (Θ̂L

(i1),k
⊗ Θ̂L

(i2,...,iℓ),k
) ◦ (id⊗ γ̂(i2,...,iℓ),k ⊗ id) ◦ (idℓ ⊗∆).

We denote by Θ̂L
k the collection of morphisms {Θ̂L

i,k | i ∈ Nℓ, ℓ ∈ N}.
A specific example of the natural transformation Θ̂L

i,k can be found in Figure 4.5.8. Observe that the

only difference between ΘL
i,k and Θ̂L

i,k is in the crossing with the (k + 1)-labeled strand.
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Φ

2 1 3 4 3

2 1 3 4 2 3

2 0 2 0 1 0 3 0 2

0 2 0 1 0 3 0 2

0 4

0 4

0 3

0 3

0 2 0 1 0 3 0 2

0 2 0 1

0 4

0 40 3

0 3

0 30 2

Figure 4.5.8. The morphism Θ̂L
i,k : F(Hi)⊗H → F̂k(Hi) for i = (2, 1, 3, 4, 2, 3) and k = 2.

Lemma 4.5.6. If i = (i1, . . . ih, ih+1, iℓ) with ℓ ⩾ 1 and 1 ⩽ h < ℓ, then

Θ̂L
i,k = (Θ̂L

(i1,...ih),k
⊗ Θ̂L

(ih+1,...,iℓ),k
) ◦ (idh ⊗ γ̂(ih+1,...,iℓ),k ⊗ id) ◦ (idℓ ⊗∆).

Proof. The proof proceeds by induction on h, and it is completely analogous to the proof of Lemma 4.5.4
(see Figure 4.5.4). □

Proposition 4.5.7. For every k ⩾ 1, there exists a unique functor F̂k : MAlg → 4Alg that first

exchanges the object Hk with Hk+1 and the morphisms Xk,k+1, Ŷk,k+1 : Hk ⊗ Hk+1 → Hk+1 ⊗ Hk

with X̂k+1,k, Yk+1,k : Hk+1 ⊗ Hk → Hk ⊗ Hk+1, respectively, and then discards labels. Furthermore,

Θ̂L
k : F ⊗H ⇒ F̂k defines a natural transformation, meaning that, for every morphism Fi,j : Hi → Hj

in MAlg, we have (see Figure 4.5.9)

Θ̂L
j,k ◦ (F(Fi,j)⊗ id) = F̂k(Fi,j) ◦ Θ̂L

i,k. (t3)

F(Fi,j)
i1 i2 is

j1 j2 jt

L
j,k

(Fi,j)
i1 i2 is

j1 j2 jt

L
i,k

Θ̂

Θ̂

′ ′ ′

′ ′ ′

k̂F(t3)

Figure 4.5.9. Naturality of Θ̂L
k (the sequences i′ and j′ are obtained from i and j, respectively,

by exchanging k and k + 1 at any of their occurrences).

Proof. We start by proving that (t3) holds for any morphism Fi,j in MAlg. Lemma 4.5.6 implies that it

is enough to show that (t3) and

γ̂j,k ◦ (F(Fi,j)⊗ id) = (id⊗F(Fi,j)) ◦ γ̂i,k (g2)

hold every time Fi,j is a generating morphism of MAlg.

For what concerns (t3), we observe that, if all labels of Fi,j are different from k + 1, then (t3)

reduces to (t2), while if all labels are different from k, then it becomes trivial by applying (c18) to the
counit ε. Therefore, it is enough to show that (t3) holds whenever Fi,j is a generating morphism with

mixed labels featuring at least one label equal to k + 1 and another equal to k. In other words, it is

enough to consider Fi,j = Ui, Xk,k+1, X̂k+1,k, Yk+1,k, Ŷk,k+1. The statement for Ui follows directly from

the associativity axiom (a1). For what concerns decorated crossings, since Yi,j = X−1j,i and Ŷi,j = X̂−1j,i

(see Lemma 4.2.2), it is enough to prove (t3) for Xk,k+1 and X̂k+1,k. This is done in Figure 4.5.10.
For what concerns (g2), if all labels of Fi,j are different from k+1, then (g2) reduces to (g1), while

if all labels are equal to k+1, then it follows from (c19). Therefore, it is enough to show that (g2) holds
whenever Fi,j is a generating morphism of MAlg with mixed labels featuring at least one label equal to
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)(c4
(c20)

kk+1

k+1k

kk+1

k+1k

(a1) (a1)
(p1)

)(c5

)(c4
)(c8

(a1)

(p1)

(a1)

(r7)
(s4)

(s1)
kk+1

k+1k

kk+1

k+1k

)(c9

(e5-11)

Figure 4.5.10. Naturality of Θ̂L
k with respect to decorated crossings with mixed labels.

k+1. In other words, it is enough to consider Fi,j = Ui,Wk+1,Wk+1, or a decorated crossing. Once again,

the statement for Ui follows directly from the associativity axiom (a1), while the proofs of (g2) for Wk+1

and Wk+1 are analogous to the ones shown in Figure 4.5.7, where in the first line the adjoint action has

to be replaced by the product, and in the second line X̂ has to be replaced by X. For what concerns
decorated crossings, we observe that, thanks to relations (c14) and (c20), it is enough to prove (g2) for

Xi,k+1 and X̂k+1,i with i ⩽ k and for X̂i,k+1 and Xk+1,i with i > k + 1. This is done in Figures 4.5.11
and 4.5.12, respectively.

(a1)
)(c2

)(c2(a1)

ik+1

k+1i
ik+1

k+1i

ik+1

k+1i

ik+1

k+1i

)(c9 )(c9

Figure 4.5.11. Naturality of γ̂k with respect to decorated crossings with mixed labels, i ⩽ k.

(c18) (c24)

ik+1

k+1i
ik+1

k+1i

ik+1

k+1i

ik+1

k+1i

Figure 4.5.12. Naturality of γ̂k with respect to decorated crossings with mixed labels, i > k+1.

We will show now that (t3) implies that F̂k : MAlg → 4Alg is a functor. In order to see this,
consider, for all ℓ ⩾ 0, k ⩾ 1, and i = (i1, i2, . . . , iℓ) with ih ⩾ 0 for all 1 ⩽ h ⩽ ℓ, the morphisms
Ωi,k,Ω

−1
i,k : Hℓ → Hℓ in 4Alg defined as

Ωi,k = Θ̂L
i,k ◦ (idℓ ⊗ η),

Ω−1i,k =

̂

ΘL
i,k ◦ (idℓ ⊗ η),

where

̂

ΘL
i,k is defined recursively, for ℓ ⩾ 0, as follows:

̂

ΘL
∅,k = ε,

̂

ΘL
i,k =

{
µ ◦ (id⊗ S) if i = k,

id⊗ ε if i ̸= k,̂

ΘL
i,k = (

̂

ΘL
i1,k ⊗ idℓ−1) ◦ (id⊗ γ̂(i2,...,iℓ),k) ◦ (id⊗

̂

ΘL
(i2,...,iℓ),k

⊗ id) ◦ (idℓ ⊗∆).
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By induction on ℓ ⩾ 0, we can see that Ω−1i,k is the inverse of Ωi,k. Indeed, for ℓ = 1, the statement

follows by definition. Then, the inductive step is proved in Figures 4.5.13–4.5.16. In particular, in Fig-
ures 4.5.13 and 4.5.14, it is shown that, up to the inductive hypotheses, the identities Ω−1i,k ◦ Ωi,k = idℓ

and Ωi,k ◦ Ω−1i,k = idℓ reduce to

(

̂

ΘL
i1,k ⊗ idℓ−1) ◦ (id⊗ γ̂(i2,...,iℓ),k) ◦ (idℓ ⊗ η) ◦ (Θ̂L

i1,k ⊗ idℓ−1) ◦ (id⊗ γ̂(i2,...,iℓ),k) ◦ (idℓ ⊗ η) = idℓ, (g3)

(Θ̂L
i1,k ⊗ idℓ−1) ◦ (id⊗ γ̂(i2,...,iℓ),k) ◦ (idℓ ⊗ η) ◦ (

̂

ΘL
i1,k ⊗ idℓ−1) ◦ (id⊗ γ̂(i2,...,iℓ),k) ◦ (idℓ ⊗ η) = idℓ, (g4)

respectively. Equations (g3) and (g4) are proved in Figures 4.5.15 and 4.5.16. Now, (t3) implies that, for

every morphism Fi,j : Hi → Hj in MAlg, we have Ωj,k ◦F(Fi,j) = F̂k(Fi,j) ◦ Ωi,k, and therefore

F̂k(Fi,j) = Ωj,k ◦F(Fi,j) ◦ Ω−1i,k .

Since F is a functor, the last identity implies the functoriality of F̂k, while Ωj,k defines a natural

equivalence between them. □

L
i1,k

Θ̂L
ΘL̂

ΘL

̂

Θ

̂
L
i1,k

Θ

̂
L
i1,k

Θ

̂

L
i1,k

Θ

̂

Ω

Ω−1
(a7)

γ̂(i2,...,i�),k

(i1,...,i�),k ΘL

̂
(i2,...,i�),k

(i1,...,i�),k
ΘL̂

(i2,...,i�),k

γ̂(i2,...,i�),k

γ̂(i2,...,i�),k

ΘL

̂
γ̂(i2,...,i�),k

γ̂(i2,...,i�),k

γ̂(i2,...,i�),k

(i2,...,i�),k

ΘL̂
(i2,...,i�),k

γ̂(i2,...,i�),k

(i2,...,i�),k

(i2,...,i�),k

γ̂(i2,...,i�),k

i1,k
Θ̂L

i1,k

Θ̂L
i1,k

Θ̂L
i1,k

Figure 4.5.13. Invertibility of Ωi,k – Part 1, reducing Ω−1
i,k ◦ Ωi,k = idℓ to (g3).

L

Θ̂L

Θ

̂
(a7)

(i1,...,i�),k

(i1,...,i�),k

Θ̂L ΘL̂
(i2,...,i�),k

γ̂(i2,...,i�),k

i1,k

L
i1,k

Θ

̂

γ̂(i2,...,i�),k

ΘL

̂
(i2,...,i�),k

Θ̂L ΘL̂
(i2,...,i�),k

γ̂(i2,...,i�),k

i1,k

L
i1,k

Θ

̂

γ̂(i2,...,i�),k

ΘL

̂
(i2,...,i�),k

Figure 4.5.14. Invertibility of Ωi,k – Part 1, reducing Ωi,k ◦ Ω−1
i,k = idℓ to (g4).

(a8)

(i2,...,i�),kγ̂

γ̂(i2,...,i�),k
(c16-25)

Figure 4.5.15. Invertibility of Ωi,k – Part 2, establishing (g3) and (g4) when i1 ̸= k.
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(a8)
(a1)

′)(a2
(s1 ′)

(a7)

γ̂(i2,...,i�),k

γ̂(i2,...,i�),k

γ̂(i2,...,i�),k

γ̂(i2,...,i�),k
γ̂(i2,...,i�),k

γ̂(i2,...,i�),k
(c19-25)(c19-25)

Figure 4.5.16. Invertibility of Ωi,k – Part 2, establishing (g3) when i1 = k (establishing (g4)
requires using (s1) instead of (s1 ′)).

4.6. Invariance of Φ(T )

Let T : E2s → E2t be a tangle in 4KT presented by a strictly regular planar diagram of the form
represented in the leftmost part of Figure 4.4.1, and let L be the subdiagram which represents the
blackboard framed link formed by the closed undotted components of T .

The construction of the morphism Φ(T ) = ΦL′,α(T ) in 4Alg presented in Subsection 4.4 required
the following choices:

(1) a numbering of the components Li of L = L1 ∪ · · · ∪Ln, an orientation of each component Li, and
two points pi and qi in Li, all inducing a bi-ascending state L′ = L′1 ∪ · · · ∪L′n of L, as in Step (1)
in Subsection 4.4;

(2) n embedded arcs αi : [0, 1] → [0, 1]2 such that αi(0) = ai, αi(1) = bi ∈ Li satisfying the conditions
listed in Step (2) in Subsection 4.4.

We are going to prove now that Φ(T ) is independent of such choices, and that it is invariant under
2-deformations of T . We will use the notations introduced in Subsection 4.4. In particular, Li,α = Li ∪αi

and L′i,α = L′i ∪ αi for every 1 ⩽ i ⩽ n, with Lα = L1,α ∪ · · · ∪ Ln,α and L′α = L′1,α ∪ · · · ∪ L′n,α.

Proposition 4.6.1. There exists a morphism GL′,α : H⊗s0 ⊗ H(i1,i2,...,in) → H⊗t0 in MAlg, with
{i1, i2, . . . , in} = {1, 2, . . . , n}, such that

ΦL′,α(T ) = F(GL′,α) ◦ (ids ⊗ η⊗n),

where F : MAlg → 4Alg is the forgetful functor which discards labels.

Proof. Recall that, by definition (see the right-hand side of Figure 4.4.1),

ΦL′,α(T ) =W⊗t ◦ FL′,α ◦
(
W⊗s ⊗ idn

)
◦ (ids ⊗ η⊗n),

where the morphism W⊗t ◦ FL′,α ◦ (W⊗s ⊗ idn) is assembled using the images of the elementary tangles
making up T , as presented in the second column of Figures 4.4.4, 4.4.5, and 4.4.6, with the exception of
the unit morphisms that are images of the ends ai for 1 ⩽ i ⩽ n.

Then, we only need to show that there exists a morphism GL′,α : H⊗s0 ⊗H(i1,i2,...,in) → H⊗t0 in MAlg

such that F(GL′,α) =W⊗t◦FL′,α◦(W⊗s ⊗ idHn). We can obtain GL′,α simply by attaching labels to the
morphisms appearing in the decomposition ofW⊗t◦FL′,α◦(W⊗s ⊗ idn), making sure that the assignment
is compatible with the definition of the category MAlg, see Definition 4.5.1. This is done in Figure 4.6.1,
where we label by 0 the source of W and the target of W , and where we label the remaining morphisms
according to the numbering of the components of Lα. Observe that, since the number attached to a
component of the link corresponds to its depth in the bi-ascending state L′ of L, the decorated crossings
which appear are exactly the ones in the definition of the category MAlg, see Definition 4.5.1. Hence,
GL′,α is a morphism in MAlg, as required. □

Proposition 4.6.2. For a fixed choice of the bi-ascending state L′, and hence of the numbering of
the components of L, the morphism ΦL′,α(T ) of 4Alg does not depend on the choice of the family α of
embedded arcs αi : [0, 1] → [0, 1]2 for 1 ⩽ i ⩽ n. Moreover, every arc αi can be chosen to intersect the
component Li to which it is attached in an arbitrary way, provided it still crosses below Lj,α for j < i and
above Lj,α for j > i. In other words, the conditions on αi in Step (2) of Subsection 4.4 can be weakened
to exclude (b) and (c).

Proof. In order to see that ΦL′,α(T ) is independent of the choice of the family of arcs α, we have to
show that ΦL′,α(T ) = ΦL′,α̂(T ) for any other family of arcs α̂ satisfying the same conditions required in
Step (2), except for (b) and (c). We can do that by assuming the additional hypothesis that α intersects
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=
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Figure 4.6.1. Construction of the morphism GL′,α : H⊗s
0 ⊗H(1,2,...,n) → H⊗t

0 in MAlg, with
1 ⩽ i ⩽ j ⩽ n.

α̂ regularly and, in particular, that α̂i(1) = b̂i ̸= bi = αi(1) for every 1 ⩽ i ⩽ n. In fact, if this were
not the case, we could always consider a third family ̂̂α of arcs satisfying such additional hypothesis with
respect to both α and α̂, and then show that ΦL′,α(T ) = ΦL′,̂̂α(T ) = ΦL′,α̂(T ).

Therefore, we can proceed to replace the arcs of α with those of α̂ one at a time. In other words, it is
enough to show that ΦL′,α(T ) = ΦL′,α̂(T ) whenever ΦL′,α̂(T ) is the morphism obtained by replacing the
arc αk with an arc α̂k : [0, 1] → [0, 1]2 that satisfies the conditions in Step (2) of Subsection 4.4 except
for (b) and (c), and by keeping every other arc αi with i ̸= k fixed.

The main idea behind the proof is the following. We consider the graph diagram Tα,α̂k
= Tα ∪ α̂k =

T ∪n
j=1 αj ∪ α̂k in which both arcs αk and α̂k are simultaneously attached to Lk, and we choose the

crossing state for the crossings between αk and α̂k in an arbitrary way. We can assume for instance that
α̂k crosses always over αk, and we do not mark these crossings. Under the conditions listed above, Tα,α̂k

has only regular intersections, and we can associate to it a morphism in 4Alg following the same rules
used in the definition of Φ. Then, we will show (see equations (v1) and (v2) below) that if, in this last
morphism, the unit η in the image of âk (respectively ak) is replaced by the integral element Λ, then the
resulting morphism is equivalent to ΦL′,α(T ) (respectively ΦL′,α̂(T )). Finally, we will show that the two
morphisms that are obtained by exchanging η and Λ, which are associated to ak and âk, are 2-equivalent
in 4Alg (see equation (v3) below). This last step will require the use of the natural transformation ΘL

k ,
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which means that we will interpret the essential part of the above morphisms as the image under the
forgetful functor of a labeled morphism in TAlg. Here are the details.

By Proposition 4.6.1, there exist morphisms

GL′,α : H⊗s0 ⊗H(i1,...,iℓ−1,iℓ=k,iℓ+1,...,in) → H⊗t0

and

GL′,α̂ : H⊗s0 ⊗H(i1,...,iℓ−1,iℓ+1,...,ih,k,ih+1,...,in) → H⊗t0

in MAlg such that

ΦL′,α(T ) = F(GL′,α) ◦ (ids ⊗ η⊗n) and ΦL′,α̂(T ) = F(GL′,α̂) ◦ (ids ⊗ η⊗n).

Then ΦL′,α(T ) = ΦL′,α̂(T ) will follow if we can find a third morphism

GL′,α,α̂k
: H⊗s0 ⊗H(i1,...,iℓ−1,k,iℓ+1,...,ih,k,ih+1,...,in) → H⊗t0

in MAlg such that

F(GL′,α) = F(GL′,α,α̂k
) ◦ (ids+h ⊗ Λ⊗ idn−h−1), (v1)

F(GL′,α̂) = F(GL′,α,α̂k
) ◦ (ids+ℓ−1 ⊗ Λ⊗ idn−ℓ), (v2)

F(GL′,α,α̂k
) ◦ (ids+ℓ−1 ⊗ Λ⊗ idh−ℓ ⊗ η ⊗ idn−h−1)

= F(GL′,α,α̂k
) ◦ (ids+ℓ−1 ⊗ η ⊗ idh−ℓ ⊗ Λ⊗ idn−h−1).

(v3)

In order to construct GL′,α,α̂k
, consider the graph diagram Tα,α̂k

. The morphism GL′,α,α̂k
is ob-

tained by associating to the elementary morphisms making up Tα,α̂k
the morphisms of MAlg listed in

Figures 4.6.1 and 4.6.2-(a). Notice that the edges in the image of b̂k shown in Figure 4.6.2-(a) are not
weighted by the ribbon morphism, as opposed to the ones corresponding to bk. The global form of the
morphism F(GL′,α,α̂k

) is represented in Figure 4.6.2-(b).

(a) (b)

Lk

k

k k

α̂

̂
k

bk
00

00 k k

s

t

i −11 +1 ih� i� i +1h ini

( )F αG ,α, kL′ ̂

Figure 4.6.2. Image of b′k in MAlg and global form of F(GL′,α,α̂k
).

Consider now the morphism F(GL′,α,α̂k
) ◦ (ids+h ⊗ Λ ⊗ idn−h−1) of 4Alg obtained by composing

the image of α̂k with the integral element Λ (see the second diagram in Figure 4.6.3). Since Λ belongs

to TAlg, and since the image of α̂k is made up entirely of decorated crossings of type X, X̂, Y , and Ŷ ,
which also belong to TAlg, and of ev and coev morphisms, we can apply relations (c18), (c19), (c24),
and (c25) in Table 4.2.10 and the duality between ε and Λ in Table 2.4.3 to pull up Λ towards the image

of b̂k, thus obtaining F(GL′,α) (see the last two steps in Figure 4.6.3). This proves (v1), and the proof
of (v2) is completely analogous.

fi

−1

Lk

bk

a

αk

k

(c18)
(c19)
(c24)
(c25)

fi

−1

fi

−1

ak̂

α̂

̂

k

bk

(e2)
(e3 )′

Figure 4.6.3. Independence of the choice of αk: proof of (v1).
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The proof of (v3) is shown in Figure 4.6.4. Here, in the second diagram, γ−1(ih+1,...,in),k
is the inverse

of the morphism γ(ih+1,...,in),k : Hn−h ⊗H → H ⊗Hn−h (see Definition 4.5.2), and can be represented

as a composition of tensor products of identities, inverse braidings c−1, and decorated crossings of type

Ŷ . To implement this first step, we are using the fact that the counit ε belongs to TAlg, and can thus
be pulled up to the top-right using the naturality of the braided structures of 4Alg and TAlg. Then, the
top part of the second diagram can be interpreted as idt ⊗ ε = ΘL

(0,...,0),k, which allows us to use, in the

second step, the naturality property (t2) of ΘL
k to intertwine it with F(GL′,α,α̂k

). □

(t2)
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s

t

s

t

)(i4
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00 k ki −11 +1 ih� i� i +1h ini

( )F αG ,α, kL′ ̂

(e6)

Figure 4.6.4. Independence of the choice of αk: proof of (v3).

Since ΦL′,α(T ) is independent of the choice of the arcs αi for all 1 ⩽ i ⩽ n, from now we will denote
this morphism simply as ΦL′(T ).

Proposition 4.6.3. The morphism ΦL′(T ) does not depend on the numbering of the components
of L, that is, on the vertical order of the components of the bi-ascending state L′.
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Proof. In order to show that ΦL′(T ) is independent of the numbering of the components of L, it is enough
to show that ΦL′(T ) = ΦL′′(T ) when L′′ is obtained from L′ by exchanging the order of two consecutive
components Lk and Lk+1, for some 1 ⩽ k ⩽ n − 1. This implies that L′′ is obtained from L′ by setting
L′′k+1 = L′k, L

′′
k = L′k+1, and by inverting all crossings between these two components, while L′′i = L′i

for every i ̸= k, k + 1. Then, according to Proposition 4.6.1 and to the definition of the functor F̂k in

Proposition 4.5.7, ΦL′(T ) = F(GL′,α) ◦ (ids ⊗ η⊗n), while ΦL′′(T ) = F̂k(GL′,α) ◦ (ids ⊗ η⊗n). Hence, the
statement will follow if we show that

F(GL′) ◦ (ids ⊗ η⊗n) = F̂k(GL′) ◦ (ids ⊗ η⊗n).

This is done in Figure 4.6.5, where we have assumed that the endpoints a1, a2, . . . , an of α1, α2, . . . , αn

have been positioned in the lower right corner of the diagram in increasing order from the left to the
right, as it is allowed by Proposition 4.6.2. In the first step in Figure 4.6.5, we insert ε ◦ η between the
kth and the (k + 1)st strand, and pull the counit ε through the n− k vertical strands to its right using

the naturality of the two braided structures of TAlg. Since idt ⊗ ε = Θ̂L
(0,...,0),k, in the second step we use

the naturality property (t3) of Θ̂L
k (see Proposition 4.5.7) to intertwine it with F(GL′,α), thus obtaining

F̂k(GL′,α). □

00
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(a8)
(c14-18)
(c20-24)

(a2)
(c20)
(c14)

Figure 4.6.5. Proof of the independence of the choice of numbering of the components of L.

In order to prove that ΦL′(T ) is independent of the choice of the bi-ascending state of the single
components of L′, we need the following lemma.

Lemma 4.6.4. Let T = T2◦T1 be a tangle of the form represented on the left-hand side of Figure 4.6.6,
where two adjacent strands belonging to the same component Ln of the undotted link L = L1 ∪ · · · ∪Ln

of T are joined by a flat band δ. Assume that surgering Ln along δ yields two different components L̂n

and L̂n+1 of the undotted link L̂ = L1 ∪ · · · ∪Ln−1 ∪ L̂n ∪ L̂n+1 of a new tangle T̂ , where an extra dotted
component is added to encircle δ, as shown on the right-hand side of Figure 4.6.6. Assume also that

L′ = L′1 ∪ · · · ∪L′n and L̂′ = L′1 ∪ · · · ∪L′n−1 ∪ L̂′n ∪ L̂′n+1 are bi-ascending states of L and L̂, respectively,
whose components are vertically ordered according to the numbering, and such that surgering L′n along
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δ gives the two components L̂′n and L̂′n+1. In other words, L′ and L̂′ are obtained by inverting the same

crossings in L and L̂, respectively. Then ΦL′(T ) = ΦL̂′(T̂ ).

=

E2t

E2s

T2

T1

T̂=

E2t

E2s

T2

T1

T

L̂n+1

L̂n

δ δ

Ln

Ln

Figure 4.6.6. Cutting the component Ln.

Proof. Choose a set of arcs α1, . . . , αn+1 for L̂ that is consistent with the requirements in Step (2) of
Subsection 4.4 except for (b) and (c), as allowed by Proposition 4.6.2). This yields the graph diagrams

Tα and T̂α shown in Figure 4.6.7. Here, αn and αn+1 are two parallel arcs which cross over the vertical

strands belonging to L̂n+1 and under all the others. In particular, they form the same sequence of crossing
states along the pair of gray boxes.

n+1b

L̂n

n+1

nα

α

E2s

a1 a2 an−1

T1,α

T2,α

̂ nb

E2t

an an+1

=̂Tα

L̂n+1

Ln
nα

E2s

a1 a2 an−1

T1,α

T2,α

nb

E2t

an

=Tα

Ln

Figure 4.6.7. Choice of the arcs αn and αn+1 in the proof of Lemma 4.6.4: αn and αn+1 cross

over the vertical strings which belong to L̂n+1 and under all the others.

Now, the equality ΦL̂′(T̂ ) = ΦL′(T ) is proved in Figure 4.6.8, where in the last step we have used

that f̂n + f̂n+1 = 2− wr(L̂n)− wr(L̂n+1) = 2− wr(Ln) = 1 + fn. □
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Figure 4.6.8. Proof of Lemma 4.6.4.

Remark 4.6.5. We observe that replacing T = T2 ◦ T1 by T̂ , as described in Lemma 4.6.4, is a 2-

deformation. Indeed, one can go back by sliding L̂n over L̂n+1, and then by canceling the extra 1-handle

with L̂n+1.

Proposition 4.6.6. The morphism ΦL′(T ) does not depend on the choice of the bi-ascending state
of the single components of L′.

Proof. Using Proposition 4.6.3, we can assume that the component whose bi-ascending state we want to
change is the last one, Ln. According to Proposition 4.3.2, it is enough to prove that ΦL′(T ) = ΦL′′(T )
whenever the bi-ascending state L′′ is obtained from L′ by a single crossing change in L′n.

Notice that ΦL′(T ) is invariant under the planar isotopy moves in Figure 2.1.4, which rotate crossings.
Indeed, by definition, the images under Φ of all crossings of Tα are in the subcategory TAlg which,
according to Theorem 4.2.8, is a rigid monoidal category whose rigid structure is iduced by the morphisms
ev and coev. Therefore, we can assume that the changing crossing is oriented in one of the two ways shown
in the top line in Figure 4.6.9.

In both cases, we cut the component Ln by performing a surgery on it, as described in Lemma 4.6.4
and in Figure 4.6.6, along a band δ which is located immediately above the changing crossing, as shown
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δ δ

n+1

L̂

L̂ n+1L̂ n+1L̂

n

Ln

nL̂ nL̂ nL̂

n+1L̂

Ln

δ

Ln

δ

Ln

Figure 4.6.9. Orienting the changing crossing and cutting the component Ln.

in Figure 4.6.9. We obtain this way the two new components L̂n and L̂n+1. According to the second

part of Proposition 4.3.2, we can assume that L̂n and L̂n+1 are vertically separated unknots. Actually,
Proposition 4.3.2 tells us that this is true for the two component obtained by cutting Ln at the changing
crossing, but since there is no other crossing inside the dashed boxes in Figure 4.6.9, we are free to

vertically isotope L̂n and L̂n+1 inside those boxes in such a way that the same holds for them.

Then, L′ and L̂′ satisfy the hypotheses of Lemma 4.6.4, and hence we have ΦL′(T ) = ΦL̂′(T̂ ) and

ΦL′′(T ) = ΦL̂′′(T̂ ). So, we are left to prove that ΦL̂′(T̂ ) = ΦL̂′′(T̂ ). This is done in Figure 4.6.10, where

−2

(s5)

)(c7
(a1)
(r7) (p9)

(a1)

2

(t1)(a2 )′

(p2 )′
(r7)
(a1)

(p8)
(c8)

(a2 )′

(p2 )′

(t1)
(s7)

(c9)

(c9)

Figure 4.6.10. Proof of the invariance of Φ under change of crossing.
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only the parts of the images corresponding to the parts of the diagrams inside the dashed rectangles in
Figure 4.6.9 are compared, since the rest is fixed. □

It is left to show that Φ is invariant under the 2-equivalence moves in Table 3.1.1.

Proposition 4.6.7. The morphism Φ(T ) depends only on the 2-equivalence class of T in 4KT.

Proof. In order to see that Φ(T ) is invariant under the isotopy moves presented in Table 3.1.1, we observe
that, using Propositions 4.6.3 and 4.6.6, the bi-ascending state L′ can be chosen so that the image under
Φ of the isotopy move we are interested in reduces to one of the identities in Tables 4.2.10 and 4.2.11.
On the other hand, the invariance under the pushing-through move in Table 3.1.1 reduces to (t1 ′) in
Figure 4.2.7.

The proof of the invariance under 1/2-handle cancellation of an undotted component Li with a dotted
meridian is illustrated in Figure 4.6.11. We start by using the integral axiom (i2) to express multiplication
by Λ as the composition Λ ◦ ε. Then, since ε and Λ belong to the subcategory TAlg, and since they are
dual to each other with respect to ev and coev, we use moves (c18), (c19), (c24), (c25), and (u2) in
Table 4.2.10 to slide them along the image of the undotted component Li until it is transformed in the
composition ε ◦ η, which is removed through relation (a8).

fi−1
Li

bi

a

αi

i

Φ
fi−1

O
(a4)

)(c15-16
)(c24-25

(i2)

(r4)
(u2)

(c18-19)
(c24-25)

(a8)

Figure 4.6.11. Invariance of Φ(T ) under 1/2-handle cancellation.

It remains to prove that Φ(T ) is invariant under 2-handle slide of a component Lj over another
component Li, that is, under the replacement of Lj by the band connected sum of Lj and a parallel copy

L∥
i of Li. Since we have already proved the invariance of Φ(T ) under isotopy and 1/2-handle cancellations,

we can assume, thanks to Proposition 3.1.6, that Li has at most one self-crossing, and that the components
Li and Lj and the sliding band β have one of the forms outlined on the left-hand sides of Figures 4.6.12,
4.6.14, and 4.6.16 below. In these pictures, using the independence of Φ(T ) of the choice of the bi-
ascending state, we have assumed that, in the first two cases, it is Lj = L2 that slides over Li = L1,
while, in the third case, it is Lj = L1 that slides over Li = L2. We are also assuming that the visible part
of the diagram has been pulled down outside the box Tα (see Figure 4.4.1), except for the dashed lines
which interact with the rest of the diagram inside Tα. In particular, the dashed part of Li cannot form
self-crossings, but it can cross the dashed part of Lj , which can also form self-crossings.

We consider the three cases separately, starting from the one where Li has no self-crossings. In this
case, Figure 4.6.12 shows the two tangles before and after the slide, together with suitable choices for arcs
αi = α1 and αj = α2 and for the data determining bi-ascending (actually ascending) states of Li = L1

and Lj = L2.
Then, the images in 4Alg of the two tangles under Φ, constructed according to those choices, are

shown to be the same in Figure 4.6.13. Here, we first apply (a7) to split the image of α2 into two units,
and then attach together the left one to the image of Lα,1, thus obtaining the morphism µ̃ highlighted
inside the dashed box in the second diagram of the figure. Then, we use the properties of µ̃ in Table 2.5.1,
as well as (c18), (c19), (c24), (c25), and (u2) in Tables 4.2.10 and 4.2.11, to slide µ̃ all around the dashed
arc, creating this way a parallel copy of the arc. Observe that, according to Proposition 2.5.1, when the
product µ̃ passes through ev, it turns into the coproduct ∆, and when ∆ passes through coev, it turns
back into µ̃. This means that, in the process of sliding, the morphism µ̃ always moves upwards, while
the morphism ∆ always moves downwards. In particular, when we arrive to left end of the dashed arc,
we get the ∆ highlighted inside the dashed box in the third diagram of the figure. Moreover, when µ̃ or
∆ slide through a crossing, two crossings of the same type are created, while when they slide through a
morphism Uk, they turn it into Uk+1. Therefore, we have indeed doubled the dashed arc.

Now, we pass to the second case, when Li forms a positive self-crossing. The two tangles before and
after the slide, together with suitable choices for the bi-ascending states and the arcs α, are given by the
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a1

1

1

L1

a2

b
β

2b

α 2α

a1

1

1

a2

b 2b

α 2α

�
L2

L1

L2

p1
q1 p2

q2 p1
q1 p2

q2

L1
‖

Figure 4.6.12. Sliding L2 over L1, for L1 with no self-crossings.

f2

f2

−1

−1 −1

1

1
−1

−1

1

f2

−1

f2

f2

(a7)

(a7) (a7)

−1

(p2 ′)

−1

′)(a2
(c25)
(c21)

(e3)

(e3)

(d5)

Figure 4.6.13. Proof of the invariance of Φ(T ) under the slide of L2 over L1, for L1 with no
self-crossings.

first two diagrams in Figure 4.6.14, while the third is an equivalent form of the second, up to isotopy.
The proof that the images of the first and third diagrams under Φ are the same in 4Alg is presented
in Figure 4.6.15, where the first diagram has been obtained by applying relation (c22) to replace the
decorated kink in the image of Li = L1 by the identity morphism, then observing that the total ribbon
weight of the image of L1 is f1−1 = 1−wr(L′1)−1 = 1, and finally repeating the first step in Figure 4.6.13.

a1

1

1

L1

a2

b
β

2b

α 2α

p1
q1 p2

q2

L1
‖

L2

L1

p1
q1 p2

q2

L2 L1
‖

L1

L2

a2

2b

2α

a1

1b

1α

Figure 4.6.14. Sliding L2 over L1, for L1 with one positive self-crossing.
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−1

1
f2

(a7)

−1

f2

11 1

1

−1

+1
f2

f2

−1

1

(p12)
)(c4

(a7)

(p2 ′)

′)(a2
(c22)

(c12)
(c22)

(d5)

Figure 4.6.15. Proof of the invariance of Φ(T ) under the slide of L2 over L1, for L1 with one
positive self-crossing.

In the third case, we slide Lj = L1 over Li = L2, and assume that L2 forms a single negative
self-crossing. The result of the slide is presented in Figure 4.6.16, where the third diagram is again an
equivalent form of the second, up to isotopy.

a2

2α

a1

1α

2

L2

b
β

1b

a1

1α

1b

a2

2α

2b

L1

L2

L1

L2

L1

p2
q2 p1

q1 p2
q2 p1

q1

L2
‖

L2
‖

Figure 4.6.16. Sliding L1 over L2, for L2 with one negative self-crossing.

−1

f1 1

−1

1

+1f1

+1f1

−1

−1

−1

f1

−1−1 −2

−2(a7)
(r8) )(c1

(s7) (a7)

(c17)
(c17)

(c10)

′)(a2
(p2 ′)

(d5)

Figure 4.6.17. Proof of the invariance of Φ(T ) under the slide of L2 over L1, for L1 with one
negative self-crossing.

In Figure 4.6.17, we prove that the images of the first and third diagrams under Φ are the same in
4Alg. Notice that, in this case, as a consequence of relations (c16-17), the decorated kink in the image of
L2 is equal to τ

−2, and hence the total ribbon weight of the component is f2−1−2 = 1−wr(L′2)−3 = −1.
Then, the first diagram in Figure 4.6.17 has been obtained by repeating the first step in Figure 4.6.13. □

4.7. Proof of Theorem A

In this subsection, we prove one of the main results of this paper, which can be rephrased as follows.

Theorem 4.7.1. The map T → Φ(T ) extends to a braided monoidal functor Φ : 4KT → 4Alg such
that Φ ◦ Φ = id4Alg and Φ ◦ Φ = id4KT. In particular, Φ and Φ are equivalences of braided monoidal
categories.
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Proof. Since we have already proved in Proposition 4.6.7 that Φ(T ) depends only on the 2-equivalence
class of the Kirby tangle T , in order to show that Φ : 4KT → 4Alg is a well-defined monoidal functor,
we only need to prove that it preserves identities, compositions, and tensor producta. The proof that it
preserves identities is shown in Figure 4.7.1.

L1

L2

2

1α
α1b

2b

a1 a2

−1

1

Φ

1 1−1

1

−1

−1 (r3)
(r5-5 )′

(a7)

(e2)
(a2 )′

(e3 )′

(s6)

Figure 4.7.1. Proof that Φ preserves identities.

Let now T1 : E2s → E2t and T2 : E2t → E2r be Kirby tangles with n and m undotted components,
respectively. Then, the link L of undotted components of their composition T2 ◦ T1 will have exactly
n +m − t components. In order to show that Φ(T2 ◦ T1) = Φ(T2) ◦ Φ(T1), we make the special choice
of bi-ascending state and arcs for T2 ◦ T1 shown in Figure 4.7.2, where the undotted components of
L = L1 ∪ L2 ∪ · · · ∪ Ln+m−t are numbered in such way that:

⋄ L1, L2, . . . , Ln−t are the components of T1 that are not attached to its target;
⋄ Ln−t+1, Ln−t+2, . . . , Ln are the components obtained from the gluing of the open components of
T1 to the ones of T2 along E2t, numbered following the order of the intervals in E2t;

⋄ Ln+1, L2, . . . , Ln+m−t are the components of T2 that are not attached to its source.
Then, the choice of the arcs αn−t+i for i = 1, . . . , t is presented in Figure 4.7.2. Notice that each αn−t+i

forms only positive crossings with the components Ln−t+j for j = i+ 1, . . . , t.

E2s

a1 −
−

an

an t an+1
an t −t+1

−an t+2
an+m

T1,α

T2,α

E2r

Figure 4.7.2. Special choice of arcs for T2 ◦ T1.

Then, Φ(T2 ◦T1) is presented in Figure 4.7.3. In order to see that it is equivalent to Φ(T2)◦Φ(T1), we
first retract the images of the arcs αn−t+i for i = 1, . . . , t by passing the identity morphisms through the
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r

−1 −1 −1

F2

s

1 1 1
t

F1

−1

−1

−1

n−t m−t

fn−t+1

fn−

fn

t+2

Figure 4.7.3. Φ(T2 ◦ T1).

the adjoint morphisms in the decorated crossings of type X̂, as shown in Figure 4.7.4. Then, we double
the image of each arc through the move shown in Figure 4.7.5, and separate its weight as

fn−t+i − 1 = −wr(L′n−t+i) = −(1− f1,n−t+i)− (1− f2,i) = f1,n−t+i + f2,i − 2,

where (1− f1,n−t+i) is equal to the writhe of the bi-ascending state of the (n− t+ i)th component of T1,
and (1− f2,i) is equal to the writhe of the bi-ascending state of the ith component of T2 (the numbering
and the biascending states of the undotted components of T1 and T2 are induced by the ones of T2 ◦ T1).
Finally, by the inverse of the move presented in Figure 4.7.4, we pull down all identity morphisms back to

the bottom-right corner of the diagram, thus creating new decorated crossings of type X̂. The resulting
diagram is exactly Φ(T2) ◦ Φ(T1).

(p2)
(a2)

(d5 )′(c11)

Figure 4.7.4. Retracting the images of the arcs αn−t+1, . . . , αn in T2 ◦ T1.

−1 fn−t+i

−1
n−t+i

fn−t+i

−1

−1

(a1)

(a7)
(a8)

′)(a2
(s1)

f1,

if2,

(a7)
(e3)

(r5-5 )′

(e9-10)

Figure 4.7.5. Doubling the retracted images of the arcs αn−t+1, . . . , αn.



82 A. BELIAKOVA, I. BOBTCHEVA, M. DE RENZI, AND R. PIERGALLINI

In order to prove the monoidality of the functor Φ, let T1 : E2s1 → E2t1 and T2 : E2s2 → E2t2

be morphisms in 4KT. Consider T1 ⊔ T2, and order its undotted components by letting the ones of T1
precede the ones of T2; moreover, choose the arcs αi by pulling the ones of T1 across the s2 vertical
strands connected to the source of T2, forming positive crossings with them. Then, the images under Φ

of such crossings are decorated crossings of type X̂, and we can transform Φ(T1 ⊔T2) into Φ(T1)⊗Φ(T2)
by retracting the units at the end of the images of the arcs αi of T1 through the decorated crossings, by
the move presented in Figure 4.7.4.

Finally, we recall that Φ ◦ Φ = id4KT has been proved in Proposition 4.4.1, so it remains to prove
that Φ ◦Φ = id4Alg. In order to see this, it is enough to show that Φ(Φ(F )) = F when F is a generating
morphism of 4Alg. The proofs for all elementary morphisms, with the exception of S−1 and τ−1, are
presented (up to compositions with identity morphisms) in Figures 4.7.6–4.7.13. We observe that, in the
second-to-last move of Figure 4.7.8 and in the last move of Figure 4.7.10, we have expressed the decorated

crossings of type X̂ and Ŷ in terms of the adjoint morphism, and we have intertwined the adjoint and
the identity morphisms as we did in Figure 4.7.4. Now, the statements for S−1 and τ−1 follow from the
ones for S and τ , while the ones for c and w follow from relation (s8), axiom (r6), and the fact that Φ
preserves compositions. □

Φ
−1

1 1

−1

−1
1 ′)(a2

(s6)
(a7)

(r3)

(e3)

(e10)

(r5-5 )′

Figure 4.7.6. Φ(Φ(µ)) = µ.

Φ

−1

−1
1

1 ′)(a2
(s6)
(a7)

(r3)

(e3)

(e9)

(r5 )′

Figure 4.7.7. Φ(Φ(η)) = η.

Φ

(s6)
(a2-2′)

(a7) (a1)
(e2)
(e3 )′

Figure 4.7.8. Φ(Φ(∆)) = ∆.

Φ

(a7) ′)(a2

Figure 4.7.9. Φ(Φ(ε)) = ε.
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Φ

(a7)
(c23) (a2-2′)

Figure 4.7.10. Φ(Φ(S)) = S.

Φ
1

1

1

(r3)
(r5 ′)
(a7)

′)(a2
(s6)(c23)

Figure 4.7.11. Φ(Φ(τ)) = τ .

Φ

(a7)
′)(a2

Figure 4.7.12. Φ(Φ(λ)) = λ.

Φ

(a7)
′)(a2

)(i4

Figure 4.7.13. Φ(Φ(Λ)) = Λ.
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Appendix A. Tables.

(a7)(a6)
O

(a5) (a8)

(a3) (a4 ′)(a4)(a1) (a2 ′)(a2)

Elementary morphisms

product unit coproduct counit

=ε=∆=η=µ

= =S S−1

= =c c−1

antipode and its inverse

braiding and its inverse

=Λ

ribbon morphisms copairing

w =

integral formintegral element

λ = τ n = n

Braiding axioms

F

F

F

F

(s1) (s1 ′) (s2) (s3)

O
(i1) (i2) (i3) (i4) (i5)

Bialgebra axioms

Antipode axioms

Integral axioms

BP Hopf algebra axioms

Ribbon axioms

(r8) (r9)

−1−1

−1(r7)

0
(r1) (r2)

n
m

n
+m

(r3)

n

n (r5)

n

n(r4)

n

1

−1

1
(r6)

Table A.1. (Compare with Tables 2.1.2, 2.2.1, and 2.4.1)
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(s7)(s5) (s6)(s4) (s8)

Consequences of the Hopf algebra axioms

Table A.2. (Compare with Table 2.2.2)

Action properties

def
=

def

′ =

Right adjoint actionLeft adjoint action

def
=

n

n

n 1−

n 1−

def

n

n

n 1−

n 1−

=

The adjoint actions of a Hopf algebra

Other relations

ad

nad n

ad

′ad

(d1)

(d3)

(d4)

(d6)(d5)

(d8)

(d9)

(d7)

(d2)

)′(d1

)′(d2

)′(d3

)′(d4

)′(d5

)′(d8

)′(d9

)′(d7

)′(d6

Table A.3. (Compare with Table 2.3.1)
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=

(i1 ′) (i2 ′)

ev coev=

Consequences of the integral axioms

Symmetry of the integrals

Definition and properties of evaluation and coevaluation

Duality of uni-valent vertices with the same polarization

(e1)

(e3)

(e5)

(e8)

(e6) (e7)

(e4)

def

(e2)

def

)′(e3

)′(e5

)′(e8

)′(e4

Table A.4. (Compare with Table 2.4.3)
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Consequences of the ribbon axioms

n n

n n

(r7 ′)(r5 ′)n

n

(p1)

−11n

1

1

(p15) (p15 ′)

(r8) (r9)

(p13)

11

2

(p14) (p14 ′)

−2

Equivalent form of the axiom Equivalent form of the axiom

Inverting the antipode through the copairing

Consequences of the axioms (r1) to (r7) regarding the integrals

Consequences of the axioms (r1) to (r7) not using the integrals

(p2 ′)(p2)

−2 2

1
−1−1

1 1
1

1 1

(p5)

(p8) (p9)

(p6) (p7)

(p3) (p4)

(p8 ′) (p9 ′)

(p7 ′)

(p10) (p11)

(e9) (e10) (e11) )′(e11

(p12)

Table A.5. (Compare with Tables 2.4.4, 2.4.5, and 2.4.6)
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(r8)

Further properties of the adjoint actions of a BP Hopf algebra

Intertwining properties

Some consequences of the intertwining properties

Braided cocommutativity axiom for left and right adjoint actions

F F

F F

m

n

m m m

n nn

Equivalent forms of the axiom

(h0) )′(h0

(d10)

(d11)

(d12)

)′(d10

)′(d11

)′(d12

(r9)

Other properties

Equivalent forms of the axiom

(d13)

(d14)

(d15) (d16)

)′(d13

)′(d14

)′(d15 )′(d16

Table A.6. (Compare with Tables 2.3.7 and 2.5.3)
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−1

1 O

O

Factorizability axiom Anomaly-freeness axiom

=
def

w

Definition and properties of the pairing

Additional axioms and properties of a factorizable BP Hopf algebra

(f1) (f2)

(f3)

(f )

andto (n)Relations equivalent (f )

(n)

n( )

)′(f2

)′(f3

)′(f

Table A.7. (Compare with Table 2.6.1)



90 A. BELIAKOVA, I. BOBTCHEVA, M. DE RENZI, AND R. PIERGALLINI

Appendix B. Proofs.

In this appendix, we give the proofs of the properties of a BP Hopf algebra presented in Tables A.2,
A.4, A.5, and A.7. Some of them, like the ones concerning the antipode in Table A.2 and the symmetry
of the integrals in Table A.4, are well-known, and can be found in any basic textbook on Hopf algebras.
Also, the rest of the properties have already appeared in the literature. For example, the non-degeneracy
of ev and coev (relations (e8-8 ′)) were proven by Kerler in [Ke01, Lemma 7]. He also showed6 in [Ke01,
Lemmas 3 & 4] that relation (p4) is equivalent to the ribbon axiom (r6) modulo the Hopf algebra ax-
ioms together with the ribbon axioms (r1)–(r5), and that those ribbon axioms imply (p1) and (r7 ′).
The diagrammatic proofs of all relations, with the exception of (s8) and (p3), appear in [BP11, Proposi-
tions/Lemmas 4.1.4, 4.1.5, 4.1.6, 4.1.9, 4.1.10, 4.2.5, 4.2.6, 4.2.7, 4.2.11, and 4.2.13] in the more general
context of a groupoid Hopf algebra. The reason why we present the proofs here is, on the one hand,
for the sake of completeness, and, on the other hand, because the equivalence results in Subsection 2.6
require the precise knowledge of which properties of the algebra follow from which set of axioms.

B.1. Consequences of the braided Hopf algebra axioms in Table A.2

Properties (s5), (s7), and (s8) are proved in Figures B.1.1, B.1.2, and B.1.3. Then, (s4) and (s6) are
obtained by a dual argument (rotating the diagrams in Figures B.1.1 and B.1.2 upside down).

(a2)
(a4)
(s1)

)(a1-3

(a2)

(s1)
)(a1-3

(a7)
′)(a2
′)(a4

(s1 ′)
′)(a4

(a5)

Figure B.1.1. Proof of (s5).

′)(a4(s5)
(s2)(a4)

(s7)

(s3)
(s7)

Figure B.1.2. Proof of (s7).

(s1)
(s1 ′) (a3)

(a1) (a5)

Figure B.1.3. Proof of (s8).

B.2. Consequences of the integral axioms in Table A.4

Proof of Proposition 2.4.5. The S-invariance of the integral form λ and of the integral element Λ imply
that λ and Λ are respectively a two-sided integral form and a two-sided integral element (properties (i1 ′)
and (i2 ′) in Table A.4). For (i1 ′), this is proved in Figure B.2.1, while the proof of (i2 ′) is obtained
by rotating the diagram in Figures B.2.1 upside down. This implies that the braided monoidal category
freely generated by a Hopf algebra with S-invariant integral form and element is invariant under the
symmetry functor sym defined in Proposition 2.2.3. Therefore, the proofs of relations (e3 ′), (e4 ′), (e5 ′),
and (e8 ′) can be obtained by symmetry from those of (e3), (e4), (e5), and (e8), respectively. The last
relations and (e6) are proved in Figures B.2.2–B.2.6, while (e7) follows from (e6) and (e3-3 ′). □

6Kerler’s axioms use ribbon elements instead of ribbon morphisms, but the two languages are equivalent.
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(s2)
(s5)

)(i5
(s6)

)(i1

)(i5

Figure B.2.1. Proof of (i1 ′).

(a5) )(i1
)(i3

(a2)
(s1 ′)

)(a1-3
(a4)
(e1-2)

(i2)

Figure B.2.2. Proof of (e3).

(a3)(e1-2)
(e3)
(e1-2)

Figure B.2.3. Proof of (e4).

)(i5
(s4) (e3)

(e1-2)(e1-2)

Figure B.2.4. Proof of (e5).

)(i4

(s2)
(s5)

(e2)
(e3)
(s3) (e5 )′

(s2)

Figure B.2.5. Proof of (e6).

(a1)(e1-2)
(s3) (e1-2)

(s3) (e3)
(s3)

Figure B.2.6. Proof of (e8).

B.3. Properties of the ribbon structure of a BP Hopf algebra in Table A.5

Proof of Proposition 2.4.6. We will show that the properties in the first section of Table A.5 (coinciding
with Table 2.4.4) are consequences of the rest of the ribbon axioms (r1)–(r7) together with the braided
Hopf algebra axioms, but we will do this without using the existence of integrals.

Indeed, relation (r5 ′) follows from (r5), (r3), and (s4). In Figure B.3.1, we show that (p3) follows
from (r6) and from the properties of the antipode. Moreover, as it is shown in Figure B.3.2, (r6) implies
(r7 ′) as well. The same is true for (p2) (respectively (p2 ′)), which can be obtained by composing (r6) on
the left (respectively on the right) with the counit, and by applying (r4) and (a4) (respectively (a4 ′)).
Then, as it is shown in Figure B.3.3, property (p5) follows from (r7) and (p2), while the proof of (p6) is
analogous, using (s1) in place of (s1 ′).

The symmetric relations (p5 ′) and (p6 ′), in which the antipode is placed on the left of the copairing,
hold as well, and their proofs are obtained by applying the functor sym to the corresponding diagrams,
and using (p8 ′) and (p2) instead of (p8) and (p2 ′). Then, relations (p5-5 ′) and (p6-6 ′) imply that both



92 A. BELIAKOVA, I. BOBTCHEVA, M. DE RENZI, AND R. PIERGALLINI

morphisms

Ω = (µ⊗ µ) ◦ (id⊗ ((id⊗ S) ◦ w)⊗ id) : H ⊗H → H ⊗H

Ω′ = (µ⊗ µ) ◦ (id⊗ ((S ⊗ id) ◦ w)⊗ id) : H ⊗H → H ⊗H

are two-sided inverses of the monodromy Ω. Therefore, they are the same, which implies (p1).
Notice that properties (r5 ′), (r7 ′), and (p1) imply that 4Alg is invariant under the functor sym (see

Proposition 2.4.10).

−1

11

−1

11

(s3)
(s5)

(r3)

(s6)
(s2)

(r6)
(r6)

Figure B.3.1. Proof of (p3).

(r7)
(s5)

(s4)

(p3) (p3)
(p3)

Figure B.3.2. Proof of (r7 ′).

(a1)
(s1 ′)

(p2 ′)
(a2-2′)(r7)

(a1)

Figure B.3.3. Proof of (p5).

1

1 −1

−1−1

−1 −1 1
1

1
1

−1

−1
−1

−1 −1

1

(p5)(s4)
(r5-5 ′)
(a5)

(a7)
(s6)

(r5-5′)

(a2-2′)

(a2)

(r6)

Figure B.3.4. Proof of (p4).

1

−2

−2

1 1

1
1 1

(a5)

(s5)
(s2) ′)(a2

(r5

(a1)

(p4)
(r5-5

(p4)
(r5-5 (r4)

(a8)
(a2
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Figure B.3.5. Proofs of (p7) and (p8).

Relations (p7) and (p8) are proved in Figure B.3.5, while the proof of (p9) is analogous to the one
of (p8), using (r6) instead of (p4) to express the copairing. Then, relations (p7 ′), (p8 ′), and (p9 ′) follow
by symmetry. □
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Proof of Proposition 2.4.7. We proceed now with the proof of the identities in the second section of
Table A.5 (coinciding with Table 2.4.5), which concern the relationship between the ribbon structure and
the integrals of the algebra.

Relation (p10) is derived by applying (r4) and (r5) to the product of the integral element Λ and
the unit η. Relation (e9) immediately follows from (r5) and (r5 ′), while relations (e11) and (e11 ′) follow
from (p3), (p1), and (e5-5 ′). The remaining relations (p11) and (e10) are proved correspondingly in
Figures B.3.6 and B.3.7. □
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Figure B.3.6. Proof of (p11).
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(e11 )′
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Figure B.3.7. Proof of (e10).

Proof of Proposition 2.4.8. Finally, we show that the properties in the last three sections of Table A.5
(coinciding with Table 2.4.6) hold in 4Alg. The equivalence between relation (p12) and axiom (r8) follows
from the fact that (p12) can be obtained by composing both sides of (r8) with the invertible morphisms
τ on the bottom and c ◦ Ω ◦ (τ ⊗ τ) on the top. Analogously, modulo the rest of the algebra axioms,
relation (p13) is equivalent to axiom (r9). Indeed, to see that (r9) implies (p13), it is enough to observe
that the diagram on the right-hand side of (p13) can be reduced to the single crossing on the left-hand
side by applying (r9) at the crossing in the middle, and then using one move (p1) and four moves (p5-6)
to cancel the corresponding copairings. The opposite argument shows that (p13) implies (r9) as well.

Relation (p14) is proved in Figure B.3.8, (p14 ′) follows by symmetry, while (p15-15 ′) follow from
(p14-14 ′), (r7), and (s1-1 ′), and their proofs are left to the reader. □
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Figure B.3.8. Proof of (p14).

B.4. Properties of a factorizable anomaly free BP Hopf algebra in Table A.7

Relation (f ′) is equivalent to (f ) modulo (i5), (e5) and (e11). Identity (f2) is proved in Figure B.4.1,
and then (f2 ′) follows by symmetry, while, using (f2-2 ′), one can easily derive (f3-3 ′) from (r7) and (r7 ′).
Finally, relation (n) is proved in Figure B.4.2.
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Figure B.4.1. Proof of (f2).
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Figure B.4.2. Proof of (n).
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