
Published in: Rend. Ist. Mat. Univ. Trieste, Suppl. 1, XXXII (2001), 193–219

LIFTING BRAIDS

M. Mulazzani

Dipartimento di Matematica
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Abstract

In this paper we study the homeomorphisms of B2 that are liftable with re-
spect to a simple branched covering. Since any such homeomorphism maps
the branch set of the covering onto itself and liftability is invariant up to
isotopy fixing the branch set, we are dealing in fact with liftable braids.
We prove that the group of liftable braids is finitely generated by liftable
powers of half-twists around arcs joining branch points. A set of such gen-
erators is explicitly determined for the special case of branched coverings
B2 → B2. As a preliminary result we also obtain the classification of all the
simple branched coverings of B2.
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Introduction

A continuous map p : F → G between compact surfaces with G connected
and oriented is a branched covering iff it is a local homeomorphism near BdF
and any point x ∈ Int F has a neighborhood U ⊂ Int F such that the restric-
tion p|U : U → p(U) is topologically equivalent to the complex map z �→ zdx ,
for a uniquely determined positive integer dx, the local order of p at x. In
particular, we have p(Int F ) = Int G and p(Bd F ) = Bd G.

Given a branched covering p : F → G, we denote by Sp ⊂ Int F the (finite)
set of the singular points of p, that is the points x ∈ Int F such that dx > 1,
and by Bp = {P1, . . . , Pn} ⊂ Int G the set of branch points of p, defined by
Bp = p(Sp). Then, the restriction p| : F − p−1(Bp) → G − Bp is an ordinary
covering with d sheets, where d = d(p) is the order of p. The orientation of G
can be lifted to an orientation of F which makes p : (F, Bd F ) → (G, Bd G) a
map of positive degree d(p). We assume F oriented in this way.

Since p| uniquely determines p, by fixing a base point ∗ ∈ G − Bp and
numbering the fiber p−1(∗), we can represent p by means of the monodromy



ϕp : π1(G−Bp, ∗) → Σd of the ordinary covering p|, where Σd is the permuta-
tion group on {1, . . . , d}. We call ϕp the monodromy of p. In order to simplify
the notation, we write ϕ in place of ϕp, when there is no risk of confusion.
Because of the choices of ∗ and of the numbering of p−1(∗), the monodromy
is defined only up to inner automorphisms of Σd.

A branched covering p is called simple iff it maps Sp injectively onto Bp

and dx = 2 for any x ∈ Sp. This means that the monodromy of a small simple
loop around any branch point is a transposition.

Two branched coverings p : F → G and p′ : F ′ → G′ are equivalent iff there
exist orientation preserving homeomorphisms h : G → G′ and k : F → F ′ such
that p′k = h p. Of course, in this case we have d(p) = d(p′), h(Bp) = Bp′ and
k(Sp) = Sp′ . Now, it turns out that the existence of a lifting k : F → F ′ of a
given homeomorphism h : G → G′ such that h(Bp) = Bp′ depends only on the
existence of a lifting of the restriction h| : G − Bp → G′ − Bp′ . Then, by the
classical theory of ordinary covering, we get the following criterion.

Lifting theorem. A homeomorphism h : G → G′ has a lifting k : F → F ′

with respect to the branched coverings p : F → G and p′ : F ′ → G′ of the
same order d iff h(Bp) = Bp′ and there exists an inner automorphism ε of
Σd such that ϕp′h∗ = ε ϕp, where h∗ : π1(G − Bp, ∗) → π1(G

′ − Bp′ , ∗′) is
the isomorphism induced by the restriction of h. In this case ε is given by
the conjugation by σ = ν ′k ν−1 ∈ Σd, where ν : p−1(∗) → {1, . . . , d} and
ν ′ : p′−1(∗′) → {1, . . . , d} are the numberings of the fibers p−1(∗) and p′−1(∗′),
with ∗′ = h(∗), inducing the monodromies ϕp and ϕp′ .

As an immediate consequence of this lifting theorem, we have an equiva-
lence criterion for branched coverings in terms of their branch sets and mon-
odromies.

Equivalence theorem. Two branched coverings p : F → G and p′ :
F ′ → G′ of the same order d are equivalent iff there exist an orientation
preserving homeomorphism h : G → G′ and an inner automorphism ε of Σd

such that h(Bp) = Bp′ and ϕp′h∗ = ε ϕp.

The classification of the simple branched coverings of S2 up to equivalence
is classical and well known. In [6] and [7], Gabai and Kazez extended such
classification to all the closed surfaces. The following Theorem A, giving a
classification of the simple branched coverings of B2, is stated without proof in
[2]. In Section 1 we give a proof of Theorem A, by providing a canonical way of
representing branched coverings of B2. We need such canonical representation
in order to get our main result about liftable braids.

Given a simple branched covering p : F → B2 of order d, we fix a base
point ∗ ∈ S1 and a numbering of p−1(∗). Then, we define total monodromy of
p to be the permutation ϕp(ω) ∈ Σd, where ω is the clockwise oriented simple
loop supported by S1. Moreover, we denote by Ω(p) the conjugation class of
ϕp(ω) in Σd, which is uniquely determined by p (actually by the restriction of
p over S1). Now we are in position to state the classification theorem.
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Theorem A. Two connected simple branched coverings p : F → B2 and
p′ : F ′ → B2 are equivalent iff they have the same order d, the same number
n of branch points and Ω(p) = Ω(p′).

Since Ω(p) is the class of d-cycles of Σd for any simple branched covering
p : F → B2 with Bd F connected, by the Riemann-Hurwicz formula we easily
get the following corollary.

Corollary. For every compact connected orientable surface F with con-
nected boundary and for every integer n ≥ 2−χ(F ) there exists a unique (up
to equivalence) simple covering p : F → B2 with n branch points.

Given an orientable surface S and a closed subset C ⊂ S, we denote
by H(S) the group of all the orientation preserving homeomorphisms of S
onto itself and by H(S, C) ⊂ H(S) the subgroup consisting of all the h ∈
H(S) such that h(C) = C. Moreover, if D ⊂ S is another closed subset,
then we denote by HD(S) ⊂ H(S) and HD(S, C) ⊂ H(S, C) the subgroups
of the homeomorphisms which coincide with the identity in D. Finally, we
denote by M(S), M(S, C), MD(S) and MD(S, C) the mapping class groups
corresponding to the groups considered above (that is, we set M = π0 H).

For any n ≥ 1, let Bn = π1(Γn(Int B2), {P1, . . . , Pn}) be the braid group
of order n of S based at {P1, . . . , Pn} ⊂ Int B2, where Γn(X) = (Xn − ∆)/Σn

denotes the configuration space of all the subsets of X with cardinality n.
We recall that there exists an isomorphism η : Bn → MS1(B2, {P1, . . . , Pn}),
defined by setting η(b) equal to the isotopy class of the ending homeomorphism
h1 of any isotopy t �→ ht ∈ HS1(B

2) which realizes the braid b (that is, the
map t �→ ht({P1, . . . , Pn}) is a loop in Γn(Int B2) representing b).

We use the right-handed notation for the action of braids on everything,
that is (a)b denotes the image of a by the action of the braid b. If a itself is a
braid, then we have (a)b = b−1ab. Moreover, we adopt the following bracketing
convention:(a)b1b2 . . . bn = (. . . ((a)b1)b2 . . .)bn.

We say that a homeomorphism h ∈ HBd G(G) is liftable with respect to the
branched covering p : F → G iff there exists k ∈ HBd F (F ) such that p k = h p.
We call k a lifting of h. Of course, for such h and k, we have h(Bp) = Bp and
k(Sp) = Sp. Moreover, the lifting k is unique if Bd G �= �O, otherwise h may
have more than one lifting. In any case, liftability is preserved by composition
and is invariant by isotopy in HBd G(G, Bp), so it makes sense to speak of the
(subgroup of the) liftable isotopy classes in MBdG

(G, Bp).

Given a simple branched covering p : F → B2, we call b ∈ Bn (the braid
group based at the branch set Bp = {P1, . . . , Pn} of p) a liftable braid with
respect to p iff η(b) ∈ HS1(B2, Bp) is a liftable isotopy class. Moreover, we
denote by Lp ⊂ Bn the subgroup of the liftable braids with respect to p.

Following [4], we call curve for the branched covering p : F → B2 any
simple arc α ⊂ B2 joining the base point ∗ ∈ S1 with Bp and such that
Int α ⊂ Int B2−Bp. Curves are considered up to ambient isotopy of B2 modulo
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S1 ∪Bp. A system of curves is any family of curves α1, . . . , αk ⊂ B2 such that
αi ∩ αj = {∗} for all i �= j. A fundamental system is a maximal system
of curves, that is a system of curves α1, . . . , αn with the same cardinality of
Bp = {P1, . . . , Pn}.

For any curve α, let λα ∈ π1(B
2 − Bp, ∗) be the homotopy class of a

simple loop supported by the clockwise oriented boundary of a small regu-
lar neighborhood N(α) of α in B2. In order to simplify the notation we put
ϕp(α) = ϕp(λα). If p is simple, then ϕp(α) is a transposition for any curve α.
Viceversa, if α1, . . . , αn is a fundamental system for p and ϕp(αi) is a transpo-
sition for any i = 1, . . . , n, then p is simple.

Since λα1 , . . . , λαn generate π1(B
2 − Bp, ∗), for any fundamental system

α1, . . . , αn for p, the branched covering p is completely determined, up to
equivalence, by the monodromies ϕp(α1), . . . , ϕp(αn).

Following [4] again, we call interval for the branched covering p : F → B2

any simple arc x ⊂ B2 joining two branch points and such that Intx ⊂ Int B2−
Bp. Intervals are considered up to ambient isotopy of B2 modulo S1 ∪ Bp.
We call interval and we denote by the same symbol x also the counterclockwise
half-twist around x and the corresponding braid in Bn.

It immediately follows from the lifting theorem that any interval x has a
liftable power. In fact, we prove in Section 2 that, if x is not liftable, then
either x2 or x3 is liftable.

Theorem B. For any branched covering p : F → B2, the group of the
liftable braids Lp is finitely generated by liftable powers of intervals.

The proof of Theorem B is given in Section 4. As a preliminary step, in
Section 3 we consider the special case of F = B2. In this case, we explicitly
provide a set of generators, as described in the following Theorem C.

Let pn : B2 → B2 be the unique (up to equivalence) simple covering of
order d = n + 1 with n branch points. For sake of simplicity, we denote by

Ln ⊂ Bn the group Lpn of the liftable braids respect to pn.
We assume the fundamental system α1, . . . , αn and the numbering of

the sheets of pn be fixed, in such a way that the sequence of transposi-
tions ϕ(α1), . . . , ϕ(αn) is in the canonical form (1 2), . . . , (d−1 d), that is
ϕ(αi) = (i i+1) for each i = 1, . . . , n.

For each i = 1, . . . , n−1, we define xi 
 αi∪αi+1 to be the unique interval
such that xi ∪ αi ∪ αi+1 is a Jordan curve whose interior does not contain any
branch point. Moreover, we put xi,j = (xi)xi+1 . . . xj−1, for 1 ≤ i < j ≤ n.

Theorem C. For any n > 1, the group Ln of the liftable braids with
respect to the branched covering pn : B2 → B2 is generated by the above
described braids x3

i and x2
i,j, with 1 ≤ i < n and i + 1 < j ≤ n.

The above theorems constitute the first results in the study of the lifting
homomorphism λp : Lp → MBd F (F ), we are planning to carry out in order
to find a set of normal generators of kerλp in Lp, for any branched covering
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p : F → B2. This would generalize a result obtained in [4] (see also [5]) for
coverings of degree 3.

Our work is mainly aimed to get a general equivalence theorem for simple
branched coverings of S3 in terms of covering moves. In fact, the equivalence
theorem for degree 3 coverings given in [9] and [10] is essentially based on the
results of [4].

1. Branched coverings of B2

Let p : F → B2 be a simple branched covering of order d. Given a funda-
mental system α1, . . . , αn with monodromies ϕ(αi) = (ji ki) for i = 1, . . . , n,
we define the non-oriented graph Γ = Γp(α1, . . . , αn) to have vertices v1, . . . , vd

and edges e1 = {vj1 , vk1}, . . . , en = {vjn , vkn}.
We remark that the ordering of the vertices of Γ is not relevant, since it

depends on an arbitrary numbering of the sheets of p. On the contrary, the
ordering of the edges contains relevant information related to the choice of the
fundamental system. Therefore, we consider Γ as an edge-ordered graph, in
such a way that p is uniquely determined by Γ up to equivalence.

Moreover, for each non-oriented edge-ordered graph Γ with d vertices and
n edges, there exist a simple branched covering p = pΓ : FΓ → B2 of order
d with n branch points and a fundamental system α1, . . . , αn for p, such that
Γ = Γp(α1, . . . , αn).

Lemma 1.1. FΓ has the same homotopy type of Γ.

Proof. FΓ is homeomorphic to the topological union D1 � . . . � Dd of d
discs, with a band glued between Dji

and Dki
for every i = 1, . . . , n. �

Now we want to establish when two connected edge-ordered graphs Γ
and Γ′, with d vertices (which can be assumed to be the same) and n edges,
determine equivalent coverings pΓ and pΓ′ .

For any i = 1, . . . , n, let Oi be the elementary move corresponding to the
transformation (3.6) of [1], which transforms the graph Γ with edges e1, . . . , en

in the graph Γ′ with edges e′1, . . . , e
′
n, defined in the following way: if ei and ei+1

are disjoint or they share both the endpoints, then we put e′i = ei+1, e′i+1 = ei

and e′k = ek for k �= i, i + 1; otherwise, if ei and ei+1 share only one endpoint,
say ei = {a, b} and ei+1 = {b, c} with a �= c, then we put e′i = {a, c}, e′i+1 = ei

and e′k = ek for k �= i, i + 1. We also denote by O−1
i the inverse elementary

moves, defined in the obvious way.
Fixed a numbering of the vertices v1, . . . , vd of Γ, we associate to each edge

ei = {vji
, vki

} the transposition τi = (ji ki) ∈ Σd. Then, we define Ω(Γ) as the
conjugation class of the product τ1 · · · τn in Σd. We observe that the class Ω(Γ)
is uniquely determined by Γ (that is it does not depend on the numbering of
the vertices) and is invariant with respect to elementary moves. Furthermore,
it is straightforward to see that Ω(Γ) = Ω(pΓ).
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Lemma 1.2. Let Γ and Γ′ be two connected edge-ordered graphs with d
vertices and n edges. Then the coverings pΓ and pΓ′ are equivalent if and only
if Ω(Γ) = Ω(Γ′).

Proof. The ‘only if’ part is trivial. Viceversa, it suffices to prove that each
connected edge-ordered graph Γ with d vertices and n edges can be trans-
formed, by using elementary moves and their inverses, into a canonical form
dependent only on Ω(Γ).

Let us denote by c1 ≥ · · · ≥ cm the cardinalities of the non-trivial orbits
generated by any permutation of Ω(Γ) and let li = c1 + · · · + ci for each
i = 1, . . . , m, then we can choice as a canonical representative of Ω(Γ) the
permutation π given by the product

(1 2) · · · (l1−1 l1)(l1+1 l1+2) · · · (l2−1 l2) · · · (lm−1+1 lm−1+2) · · · (lm−1 lm) .

On the other hand, there exists a numbering v1, . . . , vd of the vertices of
Γ, such that τ1 · · · τn = π, where τi = (ji ki) is the transposition associated to
the edge ei = {vji

, vki
}, for every i = 1, . . . , n.

We want to transform Γ by elementary moves, leaving the numbering of
the vertices fixed, in such a way that the sequence τ1, . . . , τn becomes

(1 2), . . . , (l1−1 l1), (l1 l1+1), (l1 l1+1), (l1+1 l1+2), . . . , (l2−1 l2), (l2 l2+1),
(l2 l2+1), . . . , (lm−1 lm−1+1), (lm−1 lm−1+1), (lm−1+1 lm−1+2), . . . , (lm−1 lm),

(lm lm+1), (lm lm+1), (lm+1 lm+2), (lm+1 lm+2), . . . , (d−1 d), (d−1 d),
(d−1 d), (d−1 d), . . . , (d−1 d), (d−1 d) ,

where the first two rows contain the transposition sequence defining π, with
additional pairs of consecutive equal transpositions inserted between disjoint
cycles, and the last two rows consist of pairs of equal consecutive transposi-
tions. Moreover: a) if π is the identity then the first two rows are empty and
lm = m = 1; b) if lm = d then the third row is empty; c) the fourth row
contains (n − m + lm)/2 − d + 1 pairs of transpositions.

We proceed by induction on n. If n = 1, then Γ itself has the required
form, in fact the only possibility is τ1 = (1 2) and d = 2, since Γ is connected.
In the rest of the proof, we deal with the inductive step, assuming n > 1.

To begin with, we show how to perform moves on Γ in order to obtain
a sequence τ1, . . . , τn of the type (j1 k1), . . . , (jn′ kn′), (d−1 d), . . . , (d−1 d),
with 0 ≤ n′ < n and ji, ki �= d for each i ≤ n′. First of all, by us-
ing Remark (3.7) of [1], it is easy to get a sequence having the form
(j1 k1), . . . , (jn′ kn′), (jn′+1 d), . . . , (jn d), with 0 ≤ n′ < n and ji, ki �= d
for each i ≤ n′. Then, since Oi change the pair (ji d), (ji+1 d) with ji �= ji+1

into the pair (ji ji+1), (ji d), we can limit ourselves to consider only the case
jn′+1 = . . . = jn = h. If h = d − 1, we have done. Otherwise, if h �= d − 1, we
have that n′ > 0, by connectedness, and that n − n′ is even, since (d)τ1 . . . τn

can only assume the value d − 1 or d. At this point, we could get the de-
sired form by the sequence of elementary moves On′ , . . . , On−1, On−1, . . . , On′

if (jn′ kn′) is (h d−1). So, it remains to show how to obtain en′ = {vh, vd−1}

– 6 –



without changing the edges ei with i > n′. By connectedness, there exists a
chain of edges ei1 , . . . , eil of minimum length l ≥ 1 connecting vh and vd−1,
with i1, . . . , il ≤ n′. If l = 1, then τi = (h d−1) and we can finish by using
Remark (3.7) of [1] again. If l > 1 and |il − il−1| = 1, then we can decrease by
one the length of the chain by performing the move Oi with i = min(il, il−1).
On the other hand, if |il − il−1| > 1, then we can reduce by one the difference
between il−1 and il, by performing either O−1

il−1 if il−1 < il or Oil if il−1 > il.
So we can conclude this part of the proof by induction on l and |il − il−1|.

From now on, we assume that the first n′ edges of Γ do not contain vd and
that all the last n − n′ edges of Γ join vd−1 and vd. If n′ = 0, then we have
finished (d = 2 and either π = id or π = (1 2) depending on the parity of n).

Let us consider the case n′ > 0. We denote by Γ′ ⊂ Γ the subgraph
having vertices v1, . . . , vd−1 and edges e1, . . . , en′ . Since Γ′ is connected and
the permutation τ1 . . . τn′ is of the type requested for π, we can apply the
induction hypothesis, in order to transform Γ′ into the canonical form, by
a sequence of elementary moves and inverse of them. The same sequence of
moves also transforms Γ in a canonical form, possibly except for the presence
of more than two transpositions (d−2 d−1) immediately before the n − n′

transpositions (d−1 d). In fact, the canonical form for Γ contains either one
transposition (d−2 d−1) if cm > 2 or two of them if cm = 2. Hence, to complete
the proof, it suffices to change all the n′′ exceeding transpositions (d−2 d−1)
into (d−1 d). Taking into account that such transpositions are preceded by at
least one more (d−2 d−1) and followed by (d−1 d) and that their number n′′

is even, we can realize the wanted change by the sequence of elementary moves
On′ , . . . , On′−n′′+1, On′−n′′+1, . . . , On′ , On′−n′′ , . . . , On′−1, On′−1, . . . , On′−n′′ . �

At this point, we can prove the Theorem A stated in the introduction.

Proof of Theorem A. Let Γ and Γ′ two edge-ordered graphs such that
p = pΓ and p′ = pΓ′ . By Lemma 1.1, Γ and Γ′ are both connected. Moreover,
we have Ω(Γ) = Ω(p) = Ω(p′) = Ω(Γ′). Therefore, Theorem A immediately
follows from Lemma 1.2. �

We conclude this section by considering some elementary properties of
the restrictions of a covering of B2 over subdisks, which we will need in the
following sections.

Given a simple branched covering p : F → B2 with n branch points and
a system of curves α1, . . . , αk ⊂ B2 for p, we denote by pα1,...,αk : Fα1,...,αk →
B2

α1,...,αk
the restriction of p to Fα1,...,αk = p−1(B2

α1,...,αk
), where B2

α1,...,αk
is the

disk B2 − Int N(α1, . . . , αk), being N(α1, . . . , αk) a regular neighborhood of
α1∪ . . .∪αk that does not contain any branch points other than the endpoints
of the curves α1, . . . , αk.

We remark that pα1,...,αk is a simple covering uniquely determined up to
equivalence, which has the same order of p and n−k branch points. Moreover,
if p has c components, pα1,...,αk has c′ components, with c ≤ c′ ≤ c + k.

– 7 –



As base point for B2
α1,...,αk

we can choose either the starting-point ∗′ or
the ending-point ∗′′ of the arc N(α1, . . . , αk) ∩ S1, oriented accordingly with
the counterclockwise orientation of S1. We denote by ω′

α1,...,αk
(resp. ω′′

α1,...,αk
)

the simple clockwise oriented loop based at ∗′ (resp. ∗′′) and supported by
Bd B2

α1,...,αk
. The liftings of the arc N(α1, . . . , αk) ∩ S1 determine bijections

p−1(∗) 5 p−1(∗′) 5 p−1(∗′′). By means of this bijections, any numbering of the
sheets of p induces a coherent numbering of the sheets of pα1,...,αk , depending
on the choice of ∗′ or ∗′′ as base point B2

α1,...,αk
.

The sheets of any restriction pα1,...,αk of p will be ever numbered coherently
with the ones of p, whichever will be the choice of the base point for B2

α1,...,αk
.

We will denote with the same letter ϕ the monodromy of pα1,...,αk , with respect
to this coherent numbering, as well as the monodromy of p, without any explicit
reference to the choice of the base point.

Given any curve α ⊂ B2 for p such that α ∩ (α1 ∪ . . . ∪ αk) = {∗}, we
can assume (up to isotopy) that α ∩ B2

α1,...,αk
is an arc. Then, we denote by

α′ and (resp. α′′) the curve in B2
α1,...,αk

obtained by sliding the initial point
of α ∩ B2

α1,...,αk
along the arc N(α1, . . . , αk) ∩ B2

α1,...,αk
until ∗′ (resp. ∗′′) is

reached. By using these notations we can write pα1,...,αk 5 (pα1,...,αh)α′′
h+1,...,α′′

k 5

(pαh+1,...,αk)α′
1,...,α′

h for each h = 1, . . . , k − 1.
If α1, . . . , αn is a fundamental system for p, then for any i1 < . . . < ik and

j1 < . . . < jn−k such that {i1, . . . , ik} ∪ {j1, . . . , jn−k} = {1, . . . , n}, we have
that α′

j1
, . . . , α′

jn−k
(resp. α′′

j1
, . . . , α′′

jn−k
) is a fundamental system for pαi1

,...,αik

with base point ∗′ (resp. ∗′′). Moreover, by putting τi = ϕ(αi), straightfor-
ward computations give the following equalities: ϕ(α′

j) = τj and ϕ(α′′
j ) =

(τj)τi1 . . . τik , if j < i1; ϕ(α′
j) = (τj)τil . . . τi1 and ϕ(α′′

j ) = (τj)τil+1
. . . τik , for

il < j < il+1 with 1 ≤ l ≤ k − 1; ϕ(α′
j) = (τj)τik . . . τi1 and ϕ(α′′

j ) = τj, if
j > ik.

Lemma 1.3. If p : F → B2 is a simple covering and α1, . . . , αk ⊂ B2

is a system of curves for p, then ϕ(ω′
α1,...,αk

) = ϕ(ω)ϕ(αk) . . . ϕ(α1) and
ϕ(ω′′

α1,...,αk
) = ϕ(αk) . . . ϕ(α1)ϕ(ω).

Proof. Let αk+1, . . . , αn be curves such that α1, . . . , αn is a fundamental
system for p. Then, by the equalities above, ϕ(ω′

α1,...,αk
) = ϕ(α′

k+1) . . . ϕ(α′
n) =

(ϕ(αk+1) . . . ϕ(αn))ϕ(αk) . . . ϕ(α1) = ϕ(ω)ϕ(αk) . . . ϕ(α1) and ϕ(ω′′
α1,...,αk

) =
ϕ(α′′

k+1) . . . ϕ(α′′
n) = ϕ(αk+1) . . . ϕ(αn) = ϕ(αk) . . . ϕ(α1)ϕ(ω). �

Lemma 1.4. A connected simple covering p : F → B2 with n branch
points is equivalent to pn if and only if one of the following conditions holds:
(1) F 5 B2; (2) p has order n + 1; (3) pα is disconnected for every curve α.

Proof. p 5 pn ⇒ (1) is trivial. (1) ⇒ (2) follows from Lemma 1.1.
(2) ⇒ (3) follows from the fact that n−1 transpositions cannot generate a tran-
sitive action on {1, . . . , n+1}. In order to prove the implication (3) ⇒ p 5 pn,
we consider a fundamental system α1, . . . , αn for p such that the sequence of
transpositions ϕp(α1), . . . , ϕp(α1) has the canonical form obtained in the proof
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of Lemma 1.2. It is easy to see that p 5 pn iff ϕ(αm) �= ϕ(αm+1) for each
m = 1, . . . , n − 1. On the other hand, if ϕ(αm) = ϕ(αm+1) for some m, then
the restriction pαm is connected. �

2. Liftable braids and intervals

In this section we consider a simple branched covering p : F → B2 of
degree d with n branch points and denote by ϕ its monodromy. We denote
by Bn the braid group based at the branch set Bp of p and by Lp ⊂ Bn the
subgroups of the liftable braids with respect to p.

Let us begin with some elementary properties of liftable braids. The fol-
lowing liftability criterion in terms of action on a fundamental system will play
a crucial role.

Lemma 2.1. Let α1, . . . , αn be a fundamental system for p. Then, a braid
b ∈ Bn is liftable if and only if ϕ((αi)b) = ϕ(αi) for every i = 1, . . . , n.

Proof. Let b∗ be the automorphism of π1(B
2 − Bp, ∗) induced by the re-

striction of b to B2 − Bp. By the lifting theorem, b is liftable if and only if
ϕ b∗ = ϕ, since the lifting of b is the identity on p−1(∗) and thus it induces
the identity conjugation on Σd. Then, the statement follows from the fact that
the sequence of transpositions associated to a fundamental system uniquely
determines ϕ. �

Let α1, . . . , αk and β1, . . . , βk two systems of curves. Suppose that there
exists a liftable braid b ∈ Bn such that (αi)b = βi for every i = 1, . . . , k. Since
any system of curves can be completed to a fundamental system, by the previ-
ous lemma, we have ϕ(αi) = ϕ(βi) for every i = 1, . . . , k. On the other hand,
we can always suppose that (B2

α1,...,αk
)b = B2

β1,...,βk
, up to isotopy. Therefore,

the restriction b| : B2
α1,...,αk

→ B2
β1,...,βk

induces an equivalence between pα1,...,αk

and pβ1,...,βk , preserving the numbering of the sheets, when they are referred
to the same base point ∗′ or ∗′′.

Lemma 2.2. Given two systems of curves α1, . . . , αk and β1, . . . , βk for p,
there exists a liftable braid b ∈ Bn such that (αi)b = βi for every i = 1, . . . , k
if and only if the following conditions hold: (1) ϕ(αi) = ϕ(βi) for every i =
1, . . . , k; (2) there exists a bijection between the components of pα1,...,αk and
pβ1,...,βk preserving the number of branch points and the numbering of the
sheets, when they are referred to the same base point.

Proof. The ‘only if’ part immediately follows from the previous discussion.
In order to prove the converse, it suffices to extend the given systems of curves
to fundamental systems α1, . . . , αn and β1, . . . , βn such that ϕ(αi) = ϕ(βi) for
every i = 1, . . . , n. In fact, in this case the braid b ∈ Bn uniquely defined by
(αi)b = βi for i = 1, . . . , n turns out to be liftable by Lemma 2.1. The funda-
mental systems α1, . . . , αn and β1, . . . , βn will be constructed by induction on
m = n − k.
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If m = 0 there is nothing to do. So, we assume m > 0 and observe that in
this case there exist connected components C ⊂ Fα1,...,αk and D ⊂ F β1,...,βk ,
such that the restrictions pα1,...,αk

|C : C → B2
α1,...,αk

and pβ1,...,βk

|D : D → B2
β1,...,βk

are non-trivial. We assume that such components correspond each other with
respect to the bijection of property (2). Then, they involve the same sheets
{i1, . . . , ie} and the same number l > 0 of branch points. Moreover, by Lemma
1.3, they have the same total monodromy with respect to the base point ∗′′,
that is the restriction of ϕ(ω′′

α1,...,αk
) = ϕ(ω′′

β1,...,βk
) to {i1, . . . , ie}.

By the proof of Theorem A, it is possible to construct two fundamental
systems γ1, . . . , γl for pα1,...,αk

|C and δ1, . . . , δl for pβ1,...,βk

|D , with the same base
point ∗′′ and such that ϕ(γi) = ϕ(δi) for every i = 1, . . . , l.

Now we consider the systems of curves α1, . . . , αk+l and β1, . . . , βk+l, ex-
tending the original ones in such a way that α′′

i = γi−k and β′′
i = δi−k for all

i = k + 1, . . . , k + l. Properties (1) and (2) still hold for these new systems of
curves. Therefore, by the induction hypothesis, they can be further extended
to fundamental systems as desired. �

We remark that property (2) in the statement of Lemma 2.2 trivially fol-
lows from property (1) when the restrictions pα1,...,αk and pβ1,...,βk are connected.
More generally, this fact holds also when the two restrictions have at most one
non-trivial component and their trivial sheets are numbered in the same way.

In the rest of this section, we deal with intervals. Given an interval x ⊂ B2

for the covering p, we say that x is of type i iff xi is the first positive power of
x which is liftable with respect to p as a braid.

By the following lemma (cf. Lemma 2.4 of [4]), each interval is either of
type 1 or type 2 or type 3. Moreover, it can be easily realized that the intervals
x and (x)b are of the same type for each liftable braid b ∈ Lp.

Lemma 2.3. Let x be an interval for p and α be a curve for p meeting x
only at one of its endpoints. Then: x is of type 1 if and only if ϕ(α) = ϕ((α)x);
x is of type 2 if and only if ϕ(α) and ϕ((α)x) are disjoint transpositions; x is
of type 3 if and only if ϕ(α) and ϕ((α)x) are different and not disjoint.

Proof. Given x and α as in the statement, let α1, . . . , αn be a fundamen-
tal system such that α1 = α, α2 = (α)x and (αi)x = αi for i = 3, . . . , n.
By Lemma 2.1, x is liftable iff it preserves all the monodromies of such
fundamental system, that is iff ϕ(α1) = ϕ(α2). The other two cases can be
achieved by similar applications of Lemma 2.1 to the intervals x2 and to x3,
taking into account that ϕ((α)x2) = ϕ((α)x)ϕ(α)ϕ((α)x) and ϕ((α)x3) =
ϕ((α)x2)ϕ((α)x)ϕ((α)x2) = ϕ((α)x)ϕ(α)ϕ((α)x)ϕ(α)ϕ((α)x). �

We denote by Ip ⊂ Lp the subgroup generated by all the liftable powers of
intervals, that is by the intervals of type 1, the second power of the intervals
of type 2 and the third power of the intervals of type 3. Of course, Theorem B
says that Ip = Lp. Nevertheless, it is temporarily convenient to keep different
notations for the two groups.
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Fixed a fundamental system α1, . . . , αn for p, we call index of a curve or
an interval (with respect to α1, . . . , αn) the minimum number (up to isotopy)
of the intersections with α1 ∪ . . . ∪ αn, not including the endpoints.

Moreover, depending on the fundamental system α1, . . . , αn, we give the
following definitions: xi 
 αi∪αi+1 is the unique interval such that xi∪αi∪αi+1

is a Jordan curve whose interior does not contain any branch point, for i =
1, . . . , n − 1; xi,j = (xi)xi+1 . . . xj−1, for 1 ≤ i < j ≤ n; x̂i,j = (xi)x

−1
i+1 . . . x−1

j−1,
for 1 ≤ i < j ≤ n; in addition, as a notational convenience, we put xi,j = xj,i

and x̂i,j = x̂j,i, for 1 ≤ j < i ≤ n. In particular, we have xi = xi,i+1 = x̂i,i+1.
We remark that the braids x1, . . . , xn−1 are the usual standard generators

of the braid group Bn; similarly, the braids x2
i,j (as well as the braids x̂2

i,j) with
1 ≤ i < j ≤ n are standard generators of the pure braids group Pn ⊂ Bn.

We conclude this section by considering all the intervals and all the curves
of indices 0 and 1 with respect to the fixed fundamental system α1, . . . , αn.

The intervals of index 0 are the x̂i,j’s. The curves of index 0 are the curves
αi,j with 1 ≤ i, j ≤ n, defined in the following way: αi,i = αi, αi,j = (αi)x̂

−1
i,j

if i < j, αi,j = (αi)x̂i,j if j < i. Such intervals and curves are related by the
following equalities:

(αi,j)x̂
−1
j,k =

{
αi,k if i ≤ j < k or j < k ≤ i ,

αi−1,k if k < i ≤ j ;

(αi,j)x̂j,k =

{
αi,k if i ≤ k < j or k < j ≤ i ,

αi+1,k if j ≤ i < k .

The intervals of index 1 are the intervals x̂i,j,k with 1 ≤ i, j, k ≤ n such
that i < k and i �= j �= k, given by: x̂i,j,k = (x̂i,j)x̂j,k if i < j < k and
x̂i,j,k = (x̂i,j)x̂

−1
j,k if i < k < j or j < i < k. As a notational convenience, we

also set x̂i,j,k = x̂k,j,i if i > k and x̂i,i,j = x̂i,j,j = x̂i,j for every i �= j.
Finally, the curves of index 1 are the curves αi,j,k with 1 ≤ i, j, k ≤ n such

that i �= j �= k, defined as follows:

αi,j,k =

{
(αi,j)x̂j,k if i < j < k or j < k ≤ i or k < i < j ,

(αi,j)x̂
−1
j,k if k < j < i or j < i < k or i ≤ k < j .

3. Liftable braids with respect to p : B2 → B2

By the results of Section 1, for every n ≥ 1 there exists a unique (up
to equivalence) simple branched covering pn : B2 → B2 of order d = n + 1
with n branch points. Moreover, the pn’s represent (up to equivalence) all the
coverings of B2 onto itself.

We assume the base point ∗ ∈ S1, the branch points P1, . . . , Pn ∈ Int B2,
the fundamental system α1, . . . , αn and the numbering of the sheets of pn fixed
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in such a way that: (1) αi joins ∗ to Pi for every i = 1, . . . , n; (2) the mon-
odromy sequence ϕ(α1), . . . , ϕ(αn) is in the canonical form (1 2), . . . , (d−1 d)
given in the proof of Theorem A, namely ϕ(αi) = (i i+1) for every i = 1, . . . , n.

In this section, all the curves αi,j and αi,j,k and all the intervals xi, xi,j,
xi,j,k, x̂i,j, x̂i,j,k, as well as all the indexes of curves and intervals, except where
expressly indicated, are referred to the fundamental system α1, . . . , αn.

In order to prove Theorem C, let us begin with some preliminary results
about curves. We recall that Ln ⊂ Bn denotes the subgroup of the liftable
braids with respect to pn.

By direct computation we get the following monodromies:

ϕ(αi,j) =

{
(i j+1) if i ≤ j ,
(i+1 j) if j ≤ i ;

ϕ(αi,j,k) =


(j+1 k+1) if i < j < k or i ≤ k < j ,
(j k) if k < j < i or j < k ≤ i ,
(j+1 k) if k ≤ i < j ,
(j k+1) if j < i ≤ k .

Assuming n > 1, we say that a curve α for pn is regular if pα
n is equivalent

to pn−1 � idB2 . We observe that, if α is a regular curve then (α)b is a regular
curve for any liftable braid b ∈ Ln.

Lemma 3.1. The curve αj is regular for every j = 1, . . . , n. Moreover,
the equivalence between pn−1 and the non-trivial component of p

αj
n is induced

by a homeomorphism hj : B2 → B2
αj

such that: hj(αi) = α′
i for 1 ≤ i < j;

hj(αi) = α′
i+1 for j ≤ i ≤ n − 1; hj(xi) = xi for 1 ≤ i < j − 1; hj(xj−1) =

(xj−1)x
−1
j ; hj(xi) = xi+1 for j − 1 < i ≤ n − 2.

Proof. The fundamental system α′
1, . . . , α

′
j−1, α

′
j+1, . . . , α

′
n for p

αj
n has mon-

odromy sequence (1 2), . . . , (j−2 j−1), (j−1 j+1), (j+1 j+2), . . . , (n−1 n).
Let hj : B2 → B2

αj
be the homeomorphism uniquely determined (up to iso-

topy) by hj(αi) = α′
i for 1 ≤ i < j and hj(αi) = α′

i+1 for j ≤ i ≤ n− 1. By the
Lifting theorem, hj can be lifted to give an equivalence between pn−1 � idB2

and p
αj
n . Hence, hj induces an equivalence between pn−1 and the non-trivial

component of p
αj
n . A straightforward computation of the intervals hj(xi) com-

pletes the proof. �
Lemma 3.2. The curves α1,n e αn,1 are regular. Moreover, we have that:

the equivalence between pn−1 and the non-trivial component of p
α1,n
n is induced

by a homeomorphism h1,n : B2 → B2
α1,n

such that h1,n(αi) = α′′
i for 1 ≤ i ≤

n−1 and h1,n(xi) = xi for 1 ≤ i ≤ n−2; the equivalence between pn−1 and the
non-trivial component of p

αn,1
n is induced by a homeomorphism hn,1 : B2 →

B2
αn,1

such that hn,1(αi) = α′
i+1 for 1 ≤ i ≤ n − 1 and hn,1(xi) = xi+1 for

1 ≤ i ≤ n − 2.
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Proof. Similar to the previous one, except that we consider the fundamen-
tal system α′′

1, . . . , α
′′
n−1 instead of α′

1, . . . , α
′
n−1 for the covering p

α1,n
n . �

Lemma 3.3. The only regular curves of index 0 are α1, . . . , αn, α1,n and
αn,1. Among these, only α1,n and αn,1 are Ln-equivalent to each other.

Proof. Lemmas 3.1 and 3.2 say that the curves α1, . . . , αn, α1,n and αn,1

are regular. In the previous section, we observed that any other curve of index
0 have to be an αi,j with j �= i and (1, n) �= (i, j) �= (n, 1). If j > i, then
the curves α1, . . . , αi−1, αi,j, αi, . . . , αj−1, αj+1, . . . , αn constitute a fundamen-
tal system for pn with monodromy sequence

(1 2), . . . , (i−1 i), (i j+1), (i i+1), . . . , (j−1 j), (j+1 j+2), . . . , (n n+1).

If j < i then the curves α1, . . . , αj−1, αj+1, . . . , αi, αi,j, αi+1, . . . , αn constitute
a fundamental system for pn with sequence of monodromies

(1 2), . . . , (j−1 j), (j+1 j+2), . . . , (i i+1), (j i+1), (i+1 i+2), . . . , (n n+1).

In both cases, none of the curves αi,j is regular, as can be immediately proved
by using Lemma 1.4.

For the second part of the lemma, we observe that the monodromies of the
curves taken into account are distinct from each other, with the only exception
of ϕ(α1,n) = ϕ(αn,1) = (1 n+1). On the other hand, since αn,1 = (α1,n)b, with
b = (xn−1 . . . x1)

n+1 ∈ Ln, we have that α1,n and αn,1 are Ln-equivalent. �
Lemma 3.4. Any fundamental system β1, . . . , βn for pn with n > 1, con-

tains at least two regular curves βi1 e βi2 .

Proof. Let Γ = Γpn(β1, . . . , βn) be the graph associated to β1, . . . , βn.
Moreover, for any i = 1, . . . , n, let Γi = Γ

p
βi
n

(β′
1, . . . , β

′
i−1, β

′
i+1, . . . , β

′
n) be

the graph associated to the fundamental system β′
1, . . . , β

′
i−1, β

′
i+1, . . . , β

′
n for

pβi
n . By Lemma 1.1, Γ is a tree. On the other hand, it follows from Lemma 1.4

that all the Γi’s have two connected components and that βi is regular if and
only if one component of Γi consists of a single vertex. Then, it is enough to
prove that there exist two graph Γi1 and Γi2 with that property.

The graph Γi can obtained from Γ, by removing the edge ei and replacing
the edge el = {vjl

, vkl
} with the new edge el−1 = {vϕ(βi)(jl), vϕ(βi)(kl)}, for every

l > i. We remark that the edges e1, . . . , ei−1, as well as all the el’s not meeting
ei, are left unaltered.

Now let Γ′ be the full subgraph of Γ generated by all the vertices of valence
greater than 1. It is not difficult to see that Γ collapses to Γ′ (remember that
n > 1). Then, also Γ′ is a non-empty tree.

If Γ′ reduces to a single vertex, this vertex is contained in all the edges
e1, . . . , en of Γ. In this case, we have that Γ1 and Γn have the required property.
Otherwise, Γ′ must contain al least two different valence one vertices w1 and
w2. From these vertices come out two different edges ei1 and ei2 of Γ−Γ′, such
that the graphs Γi1 e Γi2 have the required property.
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Let us see how to determine i1 (in the same way could be determined i2).
Let el1 be the only edge of Γ′ containing w1. Since the valence of w1 in Γ is
greater than one, there is least one edge of Γ−Γ′ containing w1. Then, we can
set i1 equal to the maximum among the indices of such edges. �

We continue by considering some properties of the intervals. First of all,
we observe that all the intervals xi are of type 3 with respect to pn, while all
the intervals xi,j with j > i + 1 are of type 2.

Lemma 3.5. All the index 0 intervals are of type 3 with respect to pn.

Proof. We recall that the index 0 intervals are the x̂i,j’s with i < j. Such
intervals are of type 3 by Lemma 2.3, since the curve αi meets x̂i,j only at its
endpoint, ϕ(αi) = (i i+1) and ϕ((αi)x̂i,j) = ϕ(αi+1,j) = (i+1 j+1). �

Lemma 3.6. All the index 1 intervals are of type 2 with respect to pn.

Proof. We recall that the index 1 intervals are the x̂i,j,k’s with i < k and
i �= j �= k. The curve αi meets x̂i,j,k only at its endpoint and we have that
(αi)x̂i,j,k coincides with αi+1,j,k if i < j < k or i < j < k and with αi,j,k if
j < i < k. In any case, the transpositions ϕ(αi) and ϕ((αi)x̂i,j,k) are disjoint.
Then, x̂i,j,k is of type 2 by Lemma 2.3. �

Lemma 3.7. There are no intervals of type 1 with respect to pn.

Proof. Given any interval x and any curve α which meets x only at its
endpoint, let β1, . . . , βn be any fundamental system such that β1 = α and β2 =
(α)x. If x were of type 1, ϕ(β1) would coincide with ϕ(β2), in contradiction
with Lemma 1.1 and Lemma 1.4. �

For sake of simplicity, we denote by In ⊂ Ln the group Ipn generated by
the liftable powers of intervals. The braids x3

i and x2
i,j with 1 ≤ i < n and

i + 1 < j ≤ n belong to In. In fact, we will see that they generate In.

Lemma 3.8. If α is a curve whose interior meets each one of the curves
α1, . . . , αn in at most one point, then α is In-equivalent to a curve of index 0.

Proof. We proceed by induction on the index of α, assuming that α mini-
mizes the number of intersection points with α1 ∪ . . .∪ αn in its isotopy class.

We start with the index 1 case. In this case, we have the curves α = αi,j,k,
with 1 ≤ i, j, k ≤ n such that i �= j �= k, defined in Section 2. If i = k, it suffices
to observe that αi,j,i is In-equivalent to the index 0 curve (αi,j,i)x̂

±3
i,j = αi±1,j,

where ± is the sign of j − i, being x̂i,j of type 3 by Lemma 3.5. If i �= k, then
αi,j,k is In-equivalent to (αi,j,k)x̂

±2
i,j,k, where ± is the sign of j − i, being x̂i,j,k of

type 2 by Lemma 3.6. The curve (αi,j,k)x̂
±2
i,j,k has index 0 if |i − j| = 1, while

it coincides with the curve αi±1,j,k, if |i− j| > 1. So, we can conclude the case
of the αi,j,k’s with i �= k, by induction on |i − j| ≥ 1.

Now we suppose that α has index > 1. Let Pk be the endpoint of α and
let Qi ∈ α ∩ αi and Qj ∈ α ∩ αj be respectively the last but one and the
last point in which the interior of α (oriented from ∗ to Pk) meets the curves
α1, . . . , αn. We consider the following arcs: ti ⊂ αi with endpoints Qi and Pi,
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tj ⊂ αj with endpoints Qj and Pj, si ⊂ α with endpoints Qi and Pk, sj ⊂ α
with endpoints Qj and Pk. By hypothesis we have i �= j. Moreover, we can
assume j �= k, otherwise we could remove the intersection Qj up to isotopy.

If i = k, the interval x = tj ∪ sj has index 0. Then, by Lemma 3.5, α is

In-equivalent to the curve (α)x±3, with sign − if tj is on the left of α and
sign + if tj is on the right of α. The curve (α)x±3 has index less than α (the
intersections Qi and Qj disappear) and it is In-equivalent to a curve of index
0 by the induction hypothesis.

If i �= k, the interval x = ti ∪ si has index 1. Then, by Lemma 3.6, α is

In-equivalent to the curve (α)x±2, with sign − if ti is on the left of α and
sign + if ti is on the right of α. The curve (α)x±2 has index less than α (the
intersection Qi disappears) and it is In-equivalent to a curve of index 0 by the
induction hypothesis. �

Lemma 3.9. Every curve α is In-equivalent to a curve of index 0.

Proof. We proceed by induction on n. For n = 1 there is nothing to prove.
So, let us suppose n > 1. First of all, we consider the special case in which
α ∩ αj = {∗} for some j = 1, . . . , n. By Lemma 3.1 and by the induction
hypothesis, it exists a braid b ∈ Ipαj

n
such that the curve (α′)b has index 0

with respect to the fundamental system α′
1, . . . , α

′
j−1, α

′
j+1, . . . , α

′
n for p

αj
n . The

braid b can also be considered as a braid in In and it is easy to verify that the
curve (α)b satisfies Lemma 3.8. Then α is In-equivalent to a curve of index 0.
By Lemma 3.2, also the cases α ∩ α1,n = {∗} and α ∩ αn,1 = {∗}, with the
braid b respectively in Ipα1,n

n
and in Ipαn,1

n
can be treated in an analogous way.

Now we carry on the proof by induction on the index of α, assuming that
α meets every αj in some point other than ∗. For every j = 1, . . . , n, we denote
by Qj the point of α∩αj nearest to Pj along αj, and by βj the curve obtained
following α from ∗ to Qj and then αj from Qj to Pj. If Pk is the endpoint
of α, then βk = α and all the curves βj with j �= k have index less than
α. Since the curves β1, . . . , βn, suitably renumbered, constitute a fundamental
system, Lemma 3.4 ensures the existence of l �= k such that βl is regular. By
the induction hypothesis, there exists b ∈ In such that (βl)b has index 0. Then
(βl)b coincides either with some αj or with α1,n or with αn,1. Hence, (α)b is

In-equivalent to a curve of index 0, being included in the cases examined at
the beginning of the proof. It follows that α is as well In-equivalent to a curve
of index 0. �

Lemma 3.10. Ln is generated by liftable powers of intervals.

Proof. We proceed by induction on n. If n = 1 there is nothing to prove.
If n > 1 and b ∈ Ln, then Lemmas 3.9 and 3.3, give us a braid c ∈ In such
that (αn)bc = αn, in such a way that bc can be considered as a braid in Lpαn

n
.

By the regularity of αn and by induction hypothesis, we have bc ∈ Ipαn
n

⊂ In

and therefore b ∈ In. �
Now, let Jn ⊂ Ln denote the subgroup generated by the braids x3

i and x2
i,j

with 1 ≤ i < n and i + 1 < j ≤ n. We want to prove that actually Jn = Ln,
that is our Theorem C.
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To get this goal, observe that in the proof of Lemma 3.10 we do not use
the liftable powers of all the intervals, but only of some particular intervals.
Therefore, it is enough to show that each one of these particular intervals is

Jn-equivalent to some xi or xi,j.

Lemma 3.11. Every interval x = (xi)x
ei+1

i+1 . . . x
ej−1

j−1 , with ei+1, . . . , ej−1 =
±1 and 1 ≤ i < j ≤ n, is Jn-equivalent to some xh,k, so all the liftable powers
of x belong to Jn.

Proof. By induction on the number of negative el’s. If all the el’s are
positive, then x = xi,j. Otherwise, let m ≥ i + 1 be the minimum integer
such that em = −1. If m = i + 1, then x = (xi)x

−1
i+1x

ei+2

i+2 . . . x
ej−1

j−1 = (y)z2x3
i

with y = (xi+1)x
ei+2

i+2 . . . x
ej−1

j−1 and z = (xi)xi+1x
ei+2

i+2 . . . x
ej−1

j−1 . Since y and
z are Jn-equivalent to some xh,k by the induction hypothesis and z is of
type 2 (so z2 ∈ Jn), we have that also x is Jn-equivalent to some xh,k.
If m > i + 1, then x = (xi)xi+1 . . . xm−1x

−1
m x

em+1

m+1 . . . x
ej−1

j−1 = (t)x2
i,m with

t = (xi)xi+1 . . . xm−1xmx
em+1

m+1 . . . x
ej−1

j−1 . Since t is Jn-equivalent to some xh,k

by the induction hypothesis, also x is Jn-equivalent to some xh,k. �
Lemma 3.12. Every interval x of index ≤ 1 is Jn-equivalent to some

xh,k, so all the liftable powers of x belong to Jn.

Proof. The intervals of index 0, that is the x̂i,j’s have been already
considered in Lemma 3.11. The same also holds for the intervals of in-
dex 1 of type x̂i,j,k with i < j < k, in fact for these intervals we have
x̂i,j,k = (xi)x

−1
i+1 . . . x−1

j−1xjx
−1
j+1 . . . x−1

k−1.
It remains only to deal with the intervals x̂i,j,k = (x̂i,j)x̂

−1
j,k such that either

i < k < j or j < i < k. In the first case we have that x̂i,j,k is Jn-equivalent
to the interval (x̂i,j,k)x̂

3
j,k = x̂i,k,j. In the second case we have that x̂i,j,k is

Jn-equivalent to the interval (x̂i,j,k)x̂
−3
i,j = x̂j,i,k. Hence, in both the cases x̂i,j,k

is Jn-equivalent to an interval having the form considered above. �
Proof of Theorem C. We proceed by induction on n. For n = 1 there is

nothing to prove. So, let us suppose n > 1. In the proof of Lemma 3.8, the In-
equivalence desired is obtained by using liftable powers of intervals of index
≤ 1, which belong in Jn by Lemma 3.12. On the other hand, in proofs of

Lemmas 3.9 and 3.10, we use liftable powers of intervals in Ipαj
n

, Ipα1,n
n

and

Ipαn,1
n

. By the induction hypothesis, these groups are generated by braids of
the form y3

i and y2
h,k with yi = h(xi) and yh,k = h(xh,k), where h denotes one

of the homeomorphism hj, h1,n and hn,1 given by Lemmas 3.1 and 3.2. It is
not difficult to see that the intervals yi and yh,k are among the ones considered
in Lemma 3.11, so their liftable powers belong to Jn.

Then, we can replace the group In with the group Jn in Lemmas 3.8 and
3.9 as well as in the proof of Lemma 3.10, in order to get Ln = Jn. �

– 16 –



4. Liftable braids with respect to p : F → B2

All this section is devoted to prove Theorem B. Here, we consider an
arbitrary connected simple branched covering p : F → B2 of order d with n
branch points. As in the previous section, we assume the base point ∗ ∈ S1,
the branch points P1, . . . , Pn ∈ Int B2, the fundamental system α1, . . . , αn and
the numbering of the sheets of p fixed in such a way that: (1) αi joins ∗ to Pi

for every i = 1, . . . , n; (2) the monodromy sequence ϕ(α1), . . . , ϕ(αn) is in the
canonical form given in the proof of Theorem A.

Lemma 4.1. Let β be a curve such that pβ is connected and let β1, . . . , βn

be a fundamental system for p. Then β is Ip-equivalent to a curve γ such that
γ ∩ βi = {∗} for some i = 1, . . . , n.

Proof. Let γ be a curve of minimum index with respect to the fundamental
system β1, . . . , βn among all the curves Ip-equivalent to β. Let us also assume
that γ minimizes the number of intersection points with β1 ∪ . . . ∪ βn in its
isotopy class. We claim that there exists an integer i = 1, . . . , n such that
γ ∩ βi = {∗}.

Suppose, by the contrary, that γ meets any βi in some point other than ∗.
For each i = 1, . . . , n, we denote by Qi the last point of γ∩βi along βi (starting
from ∗) and with γi the curve obtained following γ until Qi and then βi until
its endpoint. Up to isotopy, we can suppose γi ∩ γj = {∗} for all i �= j. If the
endpoint of γ coincides with the endpoint of βk, then γk = γ and any curve γi

with i �= k has index less than γ. We denote by σi = ϕ(γi) the monodromy of
γi. In particular, let σk = (a b) be the monodromy of γ.

Let us consider the intervals yi,j 
 γi ∪ γj for i �= j and 1 ≤ i, j ≤ n.
We observe that all the yi,k’s are of type 3, that is any transposition σi with
i �= k is distinct but not disjoint from (a b). Indeed, if yi,k were of type 1 or 2
then γ would be Ip-equivalent to the curve (γ)y±2

i,k , with − or + depending on
whether γi is on the left or on the right of γ, which has index less than γ.

On the other hand, if γi and γj, with i, j �= k, are on the same side with
respect to γ, then {σi, σj} �= {(a c), (b c)}. Indeed, assuming that Qi precedes
Qj along γ (starting from ∗), the equality {σi, σj} = {(a c), (b c)} would imply
the liftability of the interval x = (yj,k)y

±2
i,j , with − or + depending on the

fact that γi and γj are on the left or on the right of γ. Therefore, γ would
be Ip-equivalent to the curve δ = (γ)x±1, with the same choice for the sign,
which has index less than γ.

Analogously, if γi and γj, with i, j �= k, are on opposite sides with respect
to γ, then σi �= σj. Indeed, assuming as above that Qi precedes Qj along
γ (starting from ∗), the equality σi = σj would imply the liftability of yi,j.
Therefore, γ would be Ip-equivalent to the curve δ = (γ)y±1

i,j , with − or +
depending on the fact that γi is on the left or on the right of γ, which has
index less than γ.
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Hence, by renumbering the γi’s in clockwise order, we get a new funda-
mental system for p, whose monodromy sequence has the form

(c1 d1), . . . , (ch−1 dh−1), (a b), (ch+1 dh+1), . . . , (cn dn)

and satisfies the following properties: ci �∈ {a, b} and di ∈ {a, b} for any i �= h; if
i, j < h or i, j > h then ci = cj ⇒ di = dj; if i < h < j then ci = cj ⇒ di �= dj.
Then, by putting C−

a = {ci | di = a ∧ i < h}, C+
a = {ci | di = a ∧ i > h},

C−
b = {ci | di = b ∧ i < h} and C+

b = {ci | di = b ∧ i > h}, we have
C−

a ∩ C−
b = C+

a ∩ C+
b = C−

a ∩ C+
a = C−

b ∩ C+
b = �O.

Now, the fundamental system γ′
1, . . . , γ

′
h−1, γ

′
h+1, . . . , γ

′
n for the covering

pγ has monodromy sequence (c1 d1), . . . , (ch−1 dh−1), (ch+1 d̄h+1), . . . , (cn d̄n),
where d̄i = a if di = b and d̄i = b if di = a. Such a sequence of transpositions
can be reordered in the form (e1 a), . . . , (el a), (el+1 b), . . . , (en−1 b) with ei ∈
C−

a ∪ C+
b if i ≤ l and ei ∈ C+

a ∪ C−
b if i ≥ l + 1. Therefore the two sets

C−
a ∪C+

b ∪{a} e C+
a ∪C−

b ∪{b} are disjoint, non-empty and closed with respect
to the action of the group generated by these transpositions. Of course, this
fact contradicts the connection of pγ 5 pβ. So, γ cannot meet any βi in some
point other than ∗. �

Lemma 4.2. Let β be a curve such that β = (αm)b, with b ∈ Lp and
1 ≤ m ≤ n, and pβ 5 pαm is connected. Then β is Ip-equivalent to a curve δ
such that δ ∩ αi = {∗} for some i = 1, . . . , m and δ starts from ∗ on the right
(resp. left) of αi if i < m (resp. i ≥ m).

Proof. By Lemma 4.1, β is Ip-equivalent to a curve γ which meets at least
one of the αi’s only in ∗. In other words, the set S ⊂ {1, . . . , n} of the i’s such
that γ∩αi = {∗} is nonempty. We can also assume that γ has minimum index
(with respect to the fundamental system α1, . . . , αn) among all the curves
having such property in the Ip-equivalence class of β.

If there exists i ∈ S such that either i < m and γ starts from ∗ on the left
of αi or i ≥ m and γ starts from ∗ on the right of αi, then we can put δ = γ.

If such an i does not exist, but there exists i ∈ S such that the interval
x 
 γ∪αi is of type 1 or 2, then we can put δ = (γ)x±2, with + or − depending
on the fact that γ starts from ∗ on the left or on the right of αi.

In the remaining cases, all the curves αi with i ∈ S have the same mon-
odromy and start from ∗ on the same side with respect to γ. Assuming this
property and also that γ minimizes the number of intersection points with
α1 ∪ . . . ∪ αn in its isotopy class, we construct the curves γ1, . . . , γn as in the
proof of Lemma 4.1 with the αi’s in place of the βi. In particular we get γi = αi

if i ∈ S. At this point, we can carry on the proof analogously to the proof of
Lemma 4.1, with the only difference that, each time a curve γi with i ∈ S is
involved in the reasoning, we get a good definition of δ instead of a contradic-
tion with respect to the minimality of γ. �

Proof of Theorem B. We proceed by induction on the number n of branch
points of p. For n = 1 the result is trivial. So, let us suppose n > 1.
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On the other hand, the case p 5 pn has been examined in Lemma 3.10.
Hence we can also assume p �5 pn, in such a way that there exists m ≤ d − 1
minimum index such that ϕ(αm) = ϕ(αm+1). Then pαm is connected and
ϕ(αm) = ϕ(αm+1) = (m m+1).

We start by observing that, if b ∈ Lp and there exists a curve α for
p such that pα is connected and (α)b is Ip-equivalent to α, then b ∈ Ip.
Indeed, if c ∈ Ip is such that (α)b = (α)c, then (α)bc−1 = α and therefore
bc−1 can be thought as a braid in Lpα . By the induction hypothesis, we have
bc−1 ∈ Ipα ⊂ Ip and therefore b ∈ Ip. It is easy to see that an analogous
argument also holds if pα is not connected but has at most one non-trivial
component.

Now, let b ∈ Lp be an arbitrary liftable braid. By Lemma 4.2, the curve
β = (αm)b is Ip-equivalent to a curve γ such that γ ∩ αi = {∗} for some
i = 1, . . . , n. Moreover, γ starts from ∗ on the right of αi if i < m and on the
left of αi if i ≥ m. At this point, we conclude the proof by checking separately
the three possible cases.

(1) i < m. In this case ϕ(αi) = (i i+1) and both the restrictions pαi and
pαi,αm have two components, one of which is trivial (the one corresponding to
the sheet i + 1 with respect to the base point ∗′). On the other hand, pγ is
connected and therefore the components of pαi,γ can not be more than two
and they coincide with the ones of pαi . By Lemma 2.2, there exists c ∈ Lp

such that (αi)c = αi and (αm)c = γ. By applying the induction hypothesis
to c thought as a braid in Lpαi , we have that c ∈ Ipαi ⊂ Ip and therefore
β = (αm)b is Ip-equivalent to αm. Finally, the starting observation enable us
to conclude that b ∈ Ip.

(2) i = m, m + 1 or i > m + 1 with m = d − 1. In this case the interval
x 
 γ ∪ αi is of type 1 and γ is Ip-equivalent to αi and therefore to αm. Then
b ∈ Ip, since β = (αm)b is Ip-equivalent to αm.

(3) i > m + 1 with m < d − 1. In this case we have ϕ(αi) = (l l+1) with
l > m, moreover the restrictions pαi and pαm,αi are both connected or they
have two components one of which is trivial (the one corresponding to the sheet
i + 1 with respect to the base point ∗′). We consider a fundamental system
δ1, . . . , δn−2, γ, αi for p and set ϕ(δj) = σj for each j = 1, . . . , n − 2. Then
σ1 . . . σn−2 = ϕ(ω) (l l+1) (m m+1) = (m m−1 . . . 1) σ(l l+1) (m m+1)
with σ product of cycles all disjoint from (m m−1 . . . 1). It follows that
(σ1 . . . σn−2)

m(m) = m + 1. Hence the orbits of the action of 〈σ1, . . . , σn−2〉 ⊂
Σd coincide with the ones of the action of 〈σ1, . . . , σn−2, (m m+1)〉, so that also
the components of pγ,αi correspond to the ones of pαi . By Lemma 2.2, there
exists c ∈ Lp such that (αm)c = γ and (αi)c = αi. Then, we can conclude that
b ∈ Ip by the same argument of case (1).

At this point, in order to prove that Lp is finitely generated and therefore
can be generated by a finite set of liftable powers of intervals, it suffices to
observe that Lp is a subgroup of finite index of Bn (see [8]). In fact, given
b, c ∈ Bn, we have that bc−1 ∈ Lp if and only if ϕ((αi)bc

−1) = ϕ(αi) for every
i = 1, . . . , n, by Lemma 2.1. Then b and c belong to the same coset of Lp in Bn if
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and only if ϕ((αi)b) = ϕ((αi)c) for every i = 1, . . . , n. This means that there is
a bijective correspondence between cosets of Lp in Bn and admissible sequences
of transpositions of Σd of length n. Therefore | Bn : Lp | ≤ (d(d − 1)/2)n. �

References

[1] I. Berstein and A. L. Edmonds, On the construction of branched coverings
of low-dimensional manifolds, Trans. Amer. Math. Soc. 247 (1979), 87–
124.

[2] I. Berstein and A. L. Edmonds, On the classification of generic branched
coverings of surfaces, Illinois J. Math. 28 (1984), 64–82.

[3] J. S. Birman, Braids, Link, and Mapping Class Groups, Ann. of Math.
Studies 82, Princeton University Press 1974.

[4] J. S. Birman and B. Wajnryb, 3-fold branched coverings and the mapping
class group of a surface, in “Geometry and Topology”, Lecture Notes in
Math. 1167, Springer-Verlag 1985, 24–46.

[5] J. S. Birman and B. Wajnryb, Presentations of the mapping class group.
Errata: “3-fold branched coverings and the mapping class group of a sur-
face” and “A simple presentation of the mapping class group of an ori-
entable surface”, Israel J. Math. 88 (1994), 425–427.

[6] D. Gabai and W. H. Kazez, The classification of maps of surfaces, Invent.
Math. 90 (1987), 219–242.

[7] D. Gabai and W. H. Kazez, The Classification of Maps of Nonorientable
Surfaces, Math. Ann. 281 (1988), 687–702.

[8] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Pure
and Applied Mathematics, Vol. XIII, Interscience Publishers 1966.

[9] R. Piergallini, Covering Moves, Trans Amer. Math. Soc. 325 (1991), 903–
920.

[10] R. Piergallini, Four-manifolds as 4-fold branched covers of S4, Topology
34 (1995), 497-508.

– 20 –


