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Abstract

We show that for any n � 4 there exists an equivalence functor Sc
n ! Chb3+1

from the category Sc
n of n-fold connected simple coverings of B3 ⇥ [0, 1] branched

over ribbon surface tangles up to certain local ribbon moves, and the cobordism
category Chb3+1 of orientable relative 4-dimensional 2-handlebody cobordisms up
to 2-deformations.

As a consequence, we obtain an equivalence theorem for simple coverings of S3

branched over links, which provides a complete solution to the long-standing Fox-
Montesinos covering moves problem. This last result generalizes to coverings of
any degree results by the second author and Apostolakis, concerning respectively
the case of degree 3 and 4. We also provide an extension of the equivalence theorem
to possibly non-simple coverings of S3 branched over embedded graphs.

Then, we factor the functor above as Sc
n ! Hr ! Chb3+1, where Sc

n ! Hr is
an equivalence functor to a universal braided category Hr freely generated by a
Hopf algebra object H. In this way, we get a complete algebraic description of
the category Chb3+1. From this we derive an analogous description of the categoryfCob2+1 of 2-framed relative 3-dimensional cobordisms, which resolves a problem
posed by Kerler.
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Introduction

The present work is based on the preprints [12] and [13] and extends their main
results from closed manifolds to the category of cobordisms. In particular, it is the
synthesis of years-long search for the answers to the following distinct problems in
the topology of 3-manifolds:

Problem A. Find a finite set of local moves that relate any two labeled links
representing the same 3-manifold as a simple branched covering of S3.

Problem B. Find a universal monoidal braided category freely generated by a
Hopf algebra object, which is equivalent to the category fCob2+1 of 2-framed relative
3-dimensional cobordisms.

Problem A is an old one, having been formulated by Fox and Montesinos in the
seventies. It naturally arose in relation to the Hilden-Hirsch-Montesinos theorem
[29, 31, 49], which states that any closed connected oriented 3-manifold can be
realized as a 3-fold covering of S3 branched over a link (actually a knot). Such a
covering can be described in terms of its branching link, with each arc labeled by
the monodromy of the corresponding meridian (a transposition in the symmetric
group ⌃n). Hence, Problem A just expresses the equivalence problem for branched
covers in terms of moves for labeled links, usually called covering moves.

In [56], Montesinos conjectured that the two covering moves (M1) and (M2)
in Figure 6.2.2 su�ce to relate 3-fold simple coverings of S3 representing the same
3-manifold, up to 4-fold stabilization. This was proved to be true by the second
author in [61, 62], where the question was also posed, whether these local moves
together with stabilization also su�ce for simple coverings of arbitrary degree. In [4]
Apostolakis answered this question in the positive for 4-fold coverings, up to 5-fold
stabilization.

The complete solution of Problem A is given by Theorem 6.2.3, asserting that
labeled isotopy and Montesinos moves su�ce to relate any two n-fold branched
covering representations of the same 3-manifold, provided that n � 4. The proof is
independent on all the above-mentioned partial results, being based on the branched
covering interpretation of the generalized Kirby calculus developed in Chapter 3 and
Section 5.3.

We note that this result and its proof were already contained in the preprint
[12] (see below for some already published applications). However, the exposition in
the present work is adapted to the category of cobordisms, as a preliminary result
for answering Problem B.

Problem B was risen by Kerler in [35] (cf. [60, Problem 8-16 (1)]). In that paper,
the author considers a universal monoidal braided category Alg, freely generated by
a Hopf algebra object and a full (surjective) functor Alg ! fCob2+1. Moreover, he
poses the challenge to find a set of additional relations for Alg, such that the above
functor induces a category equivalence on the quotient of Alg by the new relations.

This problem is related to the origin of the (2 + 1)-dimensional TQFT’s (Topo-
logical Quantum Field Theories). We remind that any such theory is a functor fromfCob2+1 to the category of vector spaces Veck over a field k. The first constructions of
TQFT’s were based on semisimple quotients of the representation spaces of quasi-
triangular ribbon Hopf algebras (see [65]). Such approach was generalized in [36],
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where a TQFT was associated to any modular category with a special braided Hopf
algebra in it. The solution to Problem B implies that any TQFT’s lives on the rep-
resentation space of a braided Hopf algebra. Of course, the braided Hopf algebra
axioms alone are too weak. Indeed, in the definition of Alg, Kerler adds the re-
quirement that there exist a ribbon element and a non-degenerate Hopf copairing
morphisms, satisfying some extra axioms.

Here, we prove that in order to have that the quotient algebraic category is
equivalent to fCob2+1, two more axioms su�ce in addition to the ones presented
by Kerler in [35] (cf. Theorem 5.5.4). The first one describes the propagation of the
ribbon element through the comultiplication morphism, while the second one relates
the copairing and the braiding morphisms. We call the resulting quotient algebra the
universal self-dual ribbon Hopf algebra and denoted it by Hr. The complete list of
its relations, including the ones of Kerler, is presented in Tables 4.7.13 and 5.5.3. We
note that the algebra Hr (with all its relations) was already defined in the preprint
[13]. Moreover, it was shown there that the functor Hr ! fCob2+1 induces a bijective
map on the closed morphisms. So, the only new point in the present work is the
generalization of this result to all morphisms, completing in this way the answer to
Problem B.

As it should be clear from the discussion above, Problems A and B originate from
di↵erent contexts and at first glance they seem quite distant. Yet, an indication that
they may be related comes from the very reason for which they are posed. Their
solution leads in both cases to a complete diagrammatic language for describing
the concerned topological objects. Such languages are respectively based on planar
diagrams of links labeled by transpositions in ⌃n, and on planar diagrams of certain
decorated uni- and tri-valent graphs describing morphisms in the corresponding
Hopf algebra. Both kinds of diagrams are taken modulo a finite set of local moves,
i.e. moves which only change a given portion of the diagram inside a disk in a way
independent on its outside. The fact that the equivalence moves are finite in number
and local in nature, is an important feature in view of the definition of invariants.

Of course, the reason for putting the two results together in the present work is
not the philosophical similarity in the statements, but the fact that the proofs are
intrinsically related. In both cases, we go up one dimension and discuss the following
problems on the cobordism category Chb3+1 of relative 4-dimensional 2-handlebodies
up to 2-deformations (handle slidings and creation/cancelation of 1/2-handle pairs).

Problem A0. Find a finite set of local moves which relate any two labeled rib-
bon surface tangles representing the same cobordism in Chb3+1 as a simple branched
covering of B3 ⇥ [0, 1].

Problem B0. Find a universal monoidal braided category freely generated by
a Hopf algebra object, which is equivalent to the cobordisms category Chb3+1.

Any cobordism in fCob2+1 represents the framed boundary of one in Chb3+1. More-
over, fCob2+1 is equivalent to the quotient of Chb3+1 modulo 1/2-handle tradings. This
allows us to derive the solutions of Problems A and B from those of Problems A0

and B0 respectively.

If we think of the handlebodies in Chb3+1 as build on a single 0-handle, a standard
way of describing them is through Kirby tangles, representing the attaching maps of
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the corresponding 1- and 2-handles in the boundary of the 0-handle. Such tangles,
modulo isotopy and 1/2-handle moves, form a category K equivalent to Chb3+1.

Even if our goal is the description of the morphisms in Chb3+1, as an intermediate
step we will need to work with the category of relative 4-dimensional 2-handlebodies
build on n 0-handles. In Section 2.3, we introduce the corresponding category Kn

of generalized admissible Kirby tangles, which describes such handlebodies through
the attaching maps of their handles in the boundaries of the n 0-handles. Clearly,
Kn with n > 1 is much “bigger” then K = K1, but for any n > k � 1 there
exists an injective stabilization functor "n

k : Kk ! Kn, essentially given by adding
canceling pairs of 0/1-handles. The restriction of this functor to the subcategories
Kc

k ⇢ Kk and Kc
n ⇢ Kn of “connected” cobordisms is invertible, i.e. there exists a

reduction functor #n
k : Kc

n ! Kc
k such that #n

k � "n
k = id, while "n

k � #n
k ' id up to

natural transformation. In particular, for any n � 2, the category Kc
n is equivalent

to Kc
1 = K1.
The reason for considering 4-dimensional 2-handlebodies build on n 0-handles is

that they naturally occur when representing handlebodies in Chb3+1 as simple n-fold
(n � 2) coverings of B3 ⇥ [0, 1] branched over ribbon surfaces. In fact, we will use
such branched covering representation of handlebodies in Chb3+1 to solve problems
A0 and B0, according to the following scheme.

In Chapter 3, we construct the category Sn of ribbon surface tangles, labeled
in the symmetric group ⌃n, up to certain labeled isotopy moves, called 1-isotopy
moves, and two covering moves. Analogously to Kn such category describes possibly
disconnected cobordisms. Indeed, there is a naturally defined functor ⇥n : Sn ! Kn.
Then, we consider the subcategory Sc

n ⇢ Sn which describes connected cobordisms
through the restriction ⇥n : Sc

n ! Kc
n. Finally, we define a functor ⌅n : K1 ! Sc

n

for n � 4, and show that #n
1 � ⇥n and ⌅n are inverse to each other up to natural

equivalences. Therefore, we have the following diagram of category equivalences,
which solves Problem A0.

Θn

Kc
n

Sc
n K1

↓n
1

Ξn

As a consequence, Theorem 6.1.5 provides local moves (see Figures 6.1.8 and
6.1.9) to relate any two labeled ribbon surfaces representing the same connected
oriented 4-dimensional 2-handlebody (up to 2-equivalence) as n-fold simple covering
of B4, for n � 4. Based on this result and passing to suitable quotient categories
representing the boundary, we obtain the above-mentioned answer to Problem A.

In order to answer Question B, in Chapter 4 we introduce the algebraic analog
of the category Kn, which is the universal ribbon Gn-Hopf algebra Hr

n. Here Gn is
the groupoid with the numbers 1, . . . , n as the objects and with a unique morphism
for each ordered pair of objects. In particular, we define a functor �n : Hr

n ! Kn,
which is the analog of Kerler’s functor Alg ! fCob2+1 in the context of relative 4-
dimensional 2-handlebodies build on multiple 0-handles. Analogously to Kn, for any
n > k � 1 there exist a stabilization functor "n

k : Hr
k ! Hr

n, which is invertible (up
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to natural transformations) on a subcategory Hr,c
n , through the reduction functor

#n
k : Hr,c

n ! Hr,c
k . In particular, for any n � 2, the category Hr,c

n is equivalent to
Hr,c

1 = Hr
1. Moreover, for any n > k � 1 we have that #n

k ��n = �k � #n
k : Hr

n ! Kk.

Our goal is to show that �1 : Hr ! K is a category equivalence. We prove this
by factoring the functor ⇥n : Sn ! Kn as �n � n with  n : Sn ! Hr

n, and showing
that for any n � 4 the restriction  n : Sc

n ! Hr,c
n is a category equivalence. This fact

and the commutative diagram below imply that the same is true for �k : Hr,c
k ! Kc

k

for any k � 1.

Θn

Φn ΦkΨn

Sc
n Kc

n Kc
k

Hr,c
n Hr,c

k

↓n
k

↓n
k

In this way, we get a completely algebraic description of the category Chb3+1 of
connected 4-dimensional 2-handlebodies up to 2-equivalence, as the universal ribbon
category Hr = Hr

1 (cf. Theorem 3.6.4). This solves Problem B0. Then, the answer
to Problem B is obtained in Section 5.5, by passing once again to suitable quotient
categories fCob2+1 and Hr.

We would like to make few comments about applications of the present work.

a) The solution of Problem A, i.e. the description of 3-dimensional manifolds in
terms of labeled links modulo isotopy and covering moves, has already been ap-
plied in [27] and [59] to the construction of invariants of 3-manifolds, and in [17]
to the construction of convolution algebras of spin networks and spin foams.

b) The branched covering representation of 4-dimensional 2-handlebodies provided
by Theorem 6.1.5 is used in [5], to relate the monodromy descriptions of any two
topological Lefschetz fibrations over the disk having 2-equivalent total spaces.

c) The notion of 2-deformation of 4-dimensional 2-handlebodies is conjectured to be
di↵erent from the one of di↵eomorphism, which in this context is equivalent to 3-
deformation (cf. [21, 64] and Section 1.2). The solution of Problem B0 associates
to any braided ribbon Hopf algebra an invariant of 4-dimensional 2-handlebodies
under 2-deformations and implies that, if the conjecture is true, there should
exist a braided ribbon Hopf algebra whose invariant distinguishes di↵eomorphic
but not 2-equivalent handlebodies. The search for such Hopf algebras is a non-
trivial challenge, since they have to combine the properties of being unimodular,
not self-dual and not semisimple (see the discussion in [11] about the the HKR-
type invariants associated to an ordinary ribbon Hopf algebra).

d) By restricting the map #2
1 �  2 to double branched covers of B4, i.e. to ribbon

surfaces labeled with the single permutation (1 2), one obtains an invariant of
ribbon surfaces under 1-isotopy moves, taking values in Hr. We remind that
the description of all the moves relating isotopic ribbon surfaces is still an open
question. We conjecture here (see Remark 6.1.7) that 1-isotopy is weaker than
isotopy and that braided ribbon Hopf algebras should detect such a di↵erence.
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e) In Chapter 4 we introduce and study the general concept of a groupoid ribbon
Hopf algebra, even if it is being used later only in the case of the specific and
very simple groupoid Gn. The reasons for doing this are two. The first one is
that working with the general case does not make heavier the algebraic part,
actually it makes it easier to follow. The second one is that, in our believe, the
group ribbon Hopf algebra (which is another particular case of the construction)
should be useful in finding an algebraic description of other types of topological
objects, for example the group manifolds studied in [73].

As we already said, the present work is based on the preprints [12] and [13].
The editor suggested to put them together in a single monograph. Moreover, the
referee of [13] observed that it should not be too di�cult to extend the result there
to cobordisms. Indeed, we have been able to achieve such extension by following
the main line of the proof in [13] and overcoming some technical obstacles in the
definition of the natural transformations. Following the indications of the referee,
we have also expanded Section 2 with the definition of the topological category and
tried to improve the exposition of the algebraic part. In particular, we have added
Section 4.4, where we describe the properties of the adjoint morphisms and express
the two new axioms for Hr in terms of such action. This allows to simplify the proofs
in Section 4.5, even if they still remain highly technical.
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1. Preliminaries

In this chapter we collect some preliminary definitions and results. Some are
known and we just recall them in order to establish terminology and notations.
Some others are new and we include them here rather than in a specific chapter,
since they are widely used in the following or they seem to have interest in their
own right, independently from their application in the present context.

In particular: in Section 1.1 we define the notion of vertically trivial state for
a link diagram and prove an elementary property of such states, that makes them
much more manageable than arbitrary trivial states; in Section 1.2 we briefly discuss
relative handlebodies build on a manifold with boundary; in Section 1.3 we define
the 1-isotopy relation for ribbon surfaces and express it in terms of certain moves
of planar diagrams; in Section 1.4 we introduce ribbon moves for labeled ribbon
surfaces representing simple branched coverings of B4.

1.1. Links and diagrams

As usual, we represent a link L ⇢ R3 ⇢ R3 [ 1 5 S3 by a planar diagram
D ⇢ R2, consisting of the orthogonal projection of L into R2, that can be assumed
self-transversal after a suitable horizontal (height preserving) isotopy of L, with a
crossing state for each double point, telling which arc passes over the other one.
Such a diagram D uniquely determines L up to vertical isotopy. On the other hand,
link isotopy can be represented in terms of diagrams by crossing preserving isotopy
in R2 and Reidemeister moves.

A link L is called trivial if it bounds a disjoint union of disks in R3. It is well-
known that any link diagram D can be transformed into a diagram D0 of a trivial link
by suitable crossing changes, that is by inverting the state of some of its crossings.
We say that D0 is a trivial state of D. Actually, any non-trivial link diagram D has
many trivial states, but it is not clear at all how they are related to each other. For
this reason, we are lead to introduce the more restrictive notions of vertically trivial
link and vertically trivial state of a link diagram.

Definition 1.1.1. We say that a link L ⇢ R3 is vertically trivial if it meets
any horizontal plane (parallel to R2) in at most two points belonging to the same
component.

If L is a vertically trivial link, then the height function separates the components
of L (that is the height intervals of di↵erent components are disjoint), so that we
can vertically order the components of L according to their height. Moreover, each
component can be split into two arcs on which the height function is monotone,
assuming the only unique minimum and maximum values at the common endpoints.
Then, all the (possibly degenerate) horizontal segments spanned by L in R3 form a
disjoint union of disks bounded by L. This proves that L is a trivial link.

Definition 1.1.2. By a vertically trivial state of a link diagram D ⇢ R2 we
mean any trivial state of D which is the diagram of a vertically trivial link.

A vertically trivial state D0 of D can be constructed by the usual naive unlinking
procedure: 1) number the components of the link L represented by D and fix on
each component an orientation and a starting point away from crossings; 2) order
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the points of L lexicographically according to the numbering of the components and
then to the starting point and the orientation of each component; 3) resolve each
double point of D into a crossings of D0 by letting the arc which comes first in the
order pass under the other one. The link L0 represented by D0 can be clearly assumed
to be vertically trivial, considering on it a height function which preserves the order
induced by the vertical bijection with L except for a small arc at the end of each
component. Figure 1.1.1 (a) shows how the height function of a component looks
like with respect to a parametrization having the starting point and the orientation
fixed above. Keeping the parametrization fixed but changing the starting point or
the orientation we get di↵erent height functions as in Figures 1.1.1 (b) and (c)
respectively.

(a) (b) (c) (d)

Figure 1.1.1. Height functions for vertically trivial knots

Notice that the above unlinking procedure gives us only very special vertically
trivial states. While it is clear how to pass from (a) to (b), by moving the starting
point along the component, going from (a) to (c) turns out to be quite mysterious
without considering generic vertically trivial states. The height function of a com-
ponent for such a state, with respect to a parametrization starting from the unique
minimum point, looks like in Figure 1.1.1 (d), that is apparently an intermediate
state between (a) and (c). The following proposition settles the problem of relating
di↵erent vertically trivial states of the same link diagram.

Proposition 1.1.3. Any two vertically trivial states D0 and D00 of a link di-
agram D are related by a sequence D0, D1, . . . , Dn of vertically trivial states of D,
such that D0 = D0, Dn = D00 and, for each i = 1, . . . , n, Di is obtained from Di�1 by
changing all the crossings between two vertically adjacent components or by chang-
ing a single self-crossing of one component. Moreover, in the latter case the singular
link between Di�1 and Di is trivial, meaning that the unique singular component of
it spans a 1-point union of two disks disjoint from all the other components.

Proof. Since the e↵ect of changing all the crossings between two vertically ad-
jacent components is the transposition of these components in the vertical order, by
iterating this kind of modification we can permute as we want the vertical order of
all the components. Hence, we only need to address the case of a knot diagram.

Given a knot diagram D ⇢ R2 with double points x1, . . . , xn 2 R2, we consider
a parametrization f : S1 ! D and denote by t0i, t

00
i 2 S1 the two values of the

parameter such that f(t0i) = f(t00i ) = xi, for any i = 1, . . . , n.
For any smooth knot K ⇢ R3 which projects to a vertically trivial state of D, let

fK : S1 ! R3 be the parametrization of K obtained by lifting f and hK : S1 ! R
be the composition of fK with the height function. Then, hK is a smooth function
with the following properties: 1) hK has only one minimum and one maximum;
2) hK(t0i) 6= hK(t00i ), for any i = 1, . . . , n. In this way, the space of all smooth knots

– 9 –



which project to vertically trivial states of D can be identified with the space of all
smooth functions h : S1 ! R satisfying properties 1 and 2.

Now, the space S of all smooth functions h : S1 ! R satisfying property 1 is
clearly pathwise connected, while the complement C ⇢ S of property 2 is a closed
codimension 1 stratified subspace. Therefore, if K 0 and K 00 are knots projecting to
the vertically trivial states D0 and D00, then we can join hK0 and hK00 by a path in S
transversal with respect to C. This, path gives rise to a finite sequence of self-crossing
changes as in the statement, one for each transversal intersection with C.

The second part of the proposition, follows from [69, Theorem 1.4] but can also
be immediately realized by considering the union of all the (possibly degenerate)
horizontal segments spanned by the singular component. ⇤

We emphasize that the property of vertically trivial states given by Proposition
1.1.3 will play a crucial role in the proof of Lemma 3.5.1, and it is far from being
shared by all trivial states. For example, Figure 1.1.2 shows a (non-vertically) trivial
knot diagram, that is made knotted by any crossing change performed on it.

Figure 1.1.2.

1.2. Handlebodies

In this section we review some basic definitions and facts about handlebodies,
referring to [22] for a detailed discussion of the subject. Our aim here is only to
extend the standard general set up given in [22] to the notion of relative handlebody
build on a bounded manifold.

Given 0  i  d, a d-dimensional i-handle (or handle of index i) is a copy
H i of Bi ⇥ Bd�i attached to a smooth d-manifold W by a smooth embedding ' :
Si�1 ⇥Bd�i ! BdW . The map ' and its image '(Si�1 ⇥Bd�i) ⇢ BdW are called
respectively the attaching map and the attaching region of H i.

The two balls Bi ⇥ {0} and {0}⇥Bd�i are called respectively the core and the
cocore of H i, while their boundaries Si�1 ⇥ {0} and {0} ⇥ Sd�i�1 are called the
attaching sphere and the belt sphere of H i (this terminology refers to the corre-
sponding subspaces of W [' H i as well). Inside H i, longitudinal means parallel to
the core and transversal means parallel to the cocore.

By smoothing the corners in a canonical way, W [' H i becomes a smooth d-
manifold, which only depends on the isotopy class of the attaching map '.

We work only with 0- and 1-handles in dimension d  4 and with 2-handles in
dimension d = 4. So, let us have a closer look at these kinds of handles.

The 0-handles are topologically trivial. In fact, attaching a 0-handle H0 to W
is the same as taking the disjoint union W tH0 5 W tBd.

– 10 –



For a 1-handle H1, the attaching map ' : S0 ⇥ Bd 5 Bd t Bd ! BdW ,
is uniquely determined up to isotopy by the (possibly coinciding) components of
BdW where the two (d � 1)-balls forming the attaching region are located and
by the orientations induced by ' on such attaching balls. By reversing the handle
H1 those balls can be interchanged, hence only an unordered pair of components
of BdW needs to be specified when describing H1. Concerning the orientations of
the attaching balls, the only relevant information is whether they coincide or not,
when the balls are in the same component of BdW and this is orientable. If W is
orientable, the di↵erence between the two possibilities results in the orientability
or non-orientability of W [' H1. In dimension 3 and 4 we always assume that W
and W [' H1 are orientable, which implies that there is essentially only one way to
attach H1 to W for a given pair of components of BdW .

The case of a 2-handle attached to a 4-manifold W requires some more work.
In this case the attaching sphere is a knot K = '(S1 ⇥ {0}) in BdW . Up to
reversing the handle H2 the orientation of K is not relevant. Then H2 is uniquely
determined by the isotopy class of the unoriented knot K ⇢ BdW and by the
choice of a framing along K, that means an isotopy class of trivializations of the
normal disk bundle ⌫K of K in BdW . Since we always assume W to be orientable,
actually K can be any knot in BdW . Moreover, the set of all possible framings
along K bijectively corresponds to ⇡1(SO(2)) 5 Z. Unfortunately, unless K is null-
homologous in BdW , there is no canonical way of fixing the zero framing, so in
general an explicit description for the framing is needed. This can be given in terms
of framed knots in the sense of the following definition.

Definition 1.2.1. Let M be a possibly bounded 3-manifold and C ⇢ M be
regularly embedded smooth curve. Then, a framed curve based on C is an embedded
smooth band B ⇢ M with an identification B 5 C⇥[0, 1], such that C⇥{0} coincides
with the base curve C, BdC ⇥ [0, 1] corresponds to B \ BdM , while the regularly
embedded smooth curve Cfr ⇢ M corresponding to C ⇥ {1} is the framing curve
which represents the framing along C. In particular, if C is a knot (resp. a link) in
IntM then we call the framed curve a framed knot (resp. a framed link).

Therefore, to specify a 2-handle attached to a 4-manifold W along a knot C ⇢
BdW with attaching map ' : S1⇥B2 ! BdW , we can use a framed knot based on
C by letting the band B in the definition above to be '(S1⇥ [0, p]) for an arbitrary
point p 2 B2�{0}. If C is null-homologous in BdW , then the framing is determined
by the framing number fr(C) = lk(C,Cfr) 2 Z for C and Cfr coherently oriented.

Definition 1.2.2. Let M be a compact smooth (d�1)-manifold with (possibly
empty) boundary and let k  d. A d-dimensional relative k-handlebody build on
M is a smooth d-manifold W with a given filtration M ⇥ [0, 1] = W�1 ⇢ W 0 ⇢
W 1 ⇢ . . . ⇢ W k = W of smooth d-submanifolds, such that W i = W i�1 [ni

j=1 H i
j is

obtained by attaching ni disjoint i-handles to W i�1, with attaching regions contained
in �W i�1, where �W i = BdW i � (M ⇥ {0} [ BdM ⇥ [0, 1]) for any 0  i  k.

By identifying M with M ⇥ {0} ⇢ W , we think of it as a smooth submanifold
of BdW of dimension d� 1. Then, the given family of handles forming W starting
from M ⇥ [0, 1] is called a relative k-handlebody decomposition of the pair (W,M).

When M is empty, we simply say that W is a k-handlebody and call the given
family of handles a k-handlebody decomposition of W .
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We remark that in the usual definition of relative handlebody (cf. Definition
4.2.1 in [22]) the manifold M is taken to be closed. Yet, the cobordisms which we
study here are relative handlebodies build on 3-manifolds with boundary, so we need
this generalization.

By a well-known result of Cerf [16] (cf. Theorem 4.2.12 in [22], for the case when
BdM = 6O), two handlebody decompositions of the same pair (W,M) can be related,
up to ambient isotopy of W fixing M , by a finite sequence of the following handle
moves, all considered for any i = 1, . . . , d (the viceversa trivially holds as well):

1) isotoping the attaching maps of i-handles tni
j=1H

i
j in the submanifold �W i�1 of

the boundary of the (i� 1)-handlebody W i�1;

2) adding/deleting a pair of canceling handles, that is an i-handle H i and an (i�1)-
handle H i�1, such that the attaching sphere of H i intersects the belt sphere of
H i�1 transversally in a single point;

3) handle sliding of one i-handle H i
j1 over another one H i

j2 , that means changing
the attaching map of H i

j1 by an isotopy in the submanifold �W i
j1 of the bound-

ary of the i-handlebody W i
j1 = W i�1 [j 6=j1 H i

j ⇢ W i, which pushes attaching
sphere of H i

j1 through the belt sphere of H i
j2 .

Definition 1.2.3. Let W be a d-dimensional relative k-handlebody W for
some k  d. Then a k-deformation of W consists in a finite sequence of the handle
moves described above, such that at each stage we still have a relative k-handlebody,
i.e. we never add any canceling i-handle with i > k. Two relative k-handlebodies
related by a k-deformation will be called k-equivalent.

In the light of this definition, the result of Cerf can be restated by saying that
two d-dimensional relative handlebodies (W,M) and (W 0,M) are di↵eomorphic if
and only if they are d-equivalent.

For any compact smooth d-manifold W and any (possibly empty) smooth (d�1)-
submanifold M ⇢ BdW with (possibly empty) boundary, a relative d-handlebody
decomposition of the pair (W,M) can be derived from a suitable Morse function.

Such a decomposition can be assumed to have only one 0-handle in each compo-
nent disjoint from M and no 0-handles in the other components, and to have only
one d-handle in each closed component and no d-handle in the other components.
Concerning 0-handles, this can be proved by using handle moves to reduce them to
at most one (cf. Proposition 1.2.4), while the case of d-handle is dual (see [22, p.
103] for handlebody duality).

Actually, the reduction of 0-handles and dually of d-handles also applies to de-
formations, hence something more can be said about them. Namely, if (W,M) and
(W 0,M) are di↵eomorphic and have the same number of 0-handles in the corre-
sponding components, then no addition/deletion of canceling 0-handles is needed to
deform (W,M) into (W 0,M). An analogous dual fact also holds for addition/deletion
of d-handles. In particular, if (W,M) and (W 0,M) are di↵eomorphic relative (d�1)-
handlebodies, then they are (d� 1)-equivalent.

The main focus of this paper is on 2-equivalence of 4-dimensional 2-handlebodies.
By the discussion above, two such handlebodies are di↵eomorphic if and only if they
are 3-equivalent, but whether they are 2-equivalent is an open question, which is
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expected to have negative answer (cf. Section I.6 of [38] and Section 5.1 of [22]).
A list of 4-dimensional 2-handlebodies which are di↵eomorphic, but conjecturally
not 2-equivalent can be found in [21].

Lemma 3.3.1 will provide some connection between the notion of 2-deformation
of 4-dimensional 2-handlebodies and that of embedded 1-deformation of 2-dimen-
sional 1-handlebodies in B4. In a speculative sense, this relates the above mentioned
di↵eomorphism problem for 4-dimensional 2-handlebodies to the question of whether
isotopic ribbon surfaces in B4 are 1-isotopic, according to the definition we will give
in Section 1.3 (cf. Remark 6.1.7).

Since the reduction of 0-handles appears repeatedly and in di↵erent contexts in
the paper, we state the above-mentioned results in the next proposition and give
a sketch of the reduction procedure in the proof. We also consider here the case of
k-deformations of relative handlebodies with the minimum number of 0-handles as
above, which is essentially the only one occurring in this paper.

Proposition 1.2.4. Any k-handlebody decomposition of a pair (W,M) can be
changed by handle isotopy, 1-handle sliding and deletion of canceling 0/1-handle
pairs, in order to leave only one 0-handle in each component disjoint from M and no
0-handles in the other components. Moreover, if (W,M) and (W 0,M) are k-equiva-
lent relative handlebodies build on the same manifold M , both having only one
0-handle in each component disjoint from M and no 0-handles in the other compo-
nents, then there is a k-deformation relating them that does not involve any extra
0-handle.

Proof. We can limit ourselves to the case when W and W 0 are connected.
Given any k-handlebody decomposition (W,M), let G be the graph, whose ver-

tices represent the 0-handles and M , if this is non-empty, and whose edges represent
the 1-handles (with an edge connecting two vertices for each 1-handle between the
corresponding subspaces of W 0). If W is connected then G is connected as well.
Consider a maximal tree T ⇢ G having as root M if this is non-empty, or any
0-handle if M is empty. Then, T contains all the 0-handles of W and we can use
deletion of canceling 0/1-handle pairs to reduce all the handles in T to the root.

In order to deal with k-deformations, we first observe that di↵erent choices of
the maximal tree T used for the 0-handle reduction, produce k-handlebody decom-
positions that can be related by a k-deformation not involving any extra 0-handle.

Now, given any k-deformation between (W,M) and (W 0,M), we can perform
the 0-handle reduction described above on all the intermediate handlebodies, in
such a way that any 1-handle sliding is performed over a 1-handle in T and any
addition/deletion of a canceling 0/1-handle pair corresponds to an edge expan-
sion/contraction of the tree T used for the reduction. This gives a k-deformation
between (W,M) and (W 0,M) without any addition/deletion of canceling 0/1-handle
pairs and with some 1-handle sliding turned into attaching map isotopy. ⇤

We conclude this section by briefly discussing the notion of cobordism between
oriented manifolds with boundary and its relation with that of relative handlebody.

By an oriented d-manifold with marked B-boundary, we mean any pair (M,�)
where M is a compact oriented smooth d-manifold and � : BdM ! B is an orien-
tation preserving di↵eomorphism, with B a given (possibly empty) closed oriented
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smooth (d � 1)-manifold. Due to the existence of a collar of the boundary, we can
always consider � up to isotopy.

If (M0,�0) and (M1,�1) are two oriented d-manifolds with marked B-boundary,
then a relative cobordism (with corners) between them is a compact oriented smooth
(d+1)-manifold with marked boundary (W, ⌘), where ⌘ : BdW ! �M0[�0⇥{0} (B⇥
[0, 1])[�1⇥{1} M1 is an orientation preserving di↵eomorphism. We can think of �M0

and M1 as oriented smooth d-submanifolds of BdW , by identifying them with their
images under ⌘�1.

We say that (M0,�0) and (M1,�1) are cobordant when a relative cobordism as
above exists. This gives an equivalence relation on the set of all the compact smooth
d-manifolds with marked B-boundary, for a fixed closed smooth (d � 1)-manifold
B. In particular, the transitivity is guaranteed by the possibility of composing two
relative cobordisms (W1, ⌘1) and (W2, ⌘2) respectively from (M0,�0) to (M1,�1) and
from (M1,�1) to (M2,�2) to form a cobordism (W, ⌘) from (M0,�0) to (M2,�2), with
W = W1 [M1 W2 and ⌘ canonically induced in the obvious way by ⌘1|M0[ ⌘2|M2 .

Any relative cobordism (W, ⌘) between (M0,�0) and (M1,�1) can be endowed
with a structure of relative handlebody build on M0 with �W = M1 (cf. notation
introduced in Definition 1.2.2), such that the product M0 ⇥ [0, 1] ⇢ W satisfies the
condition ⌘|Bd M0⇥[0,1] = �0 ⇥ id[0,1]. Viceversa, any relative handlebody W build
on M0 with �W = M1 gives raise to a relative cobordism (W, ⌘) from (M0,�0) to
(M1,�1), such that ⌘|Bd M0⇥[0,1] = �0⇥ id[0,1]. Of course, here the roles of M0 and M1

can be exchanged by handlebody duality.

Handlebody decomposition allows us to express any relative cobordism as the
composition of elementary cobordisms, meaning cobordisms admitting a relative
handlebody structure with only one handle. Namely, for an elementary cobordism
(W, ⌘) relating (M0,�0) to (M1,�1) we have W = M0 ⇥ [0, 1] [' H i and M1 = �W .
This implies that M1 can be obtained from M0, once this is canonically identified
with M0⇥{1}, by replacing the attaching region '(Si�1⇥Bd�i) ⇢ IntM0 of H i with
Bi ⇥ Sd�i�1 ⇢ BdH i attached to Cl(M0 � '(Si�1 ⇥ Bd�i)) through the restriction
of ' to Si�1 ⇥ Sd�i�1.

The replacement of a di↵eomorphic copy of Si�1⇥Bd�i in IntM0 by a di↵eomor-
phic copy of Bi⇥Sd�i�1 attached to the rest of M0 through a given di↵eomorphism
between Si�1 ⇥ Sd�i�1 = Bd(Bi ⇥ Sd�i�1) and Bd(Si�1 ⇥Bd�i) ⇢ IntM0 is usually
referred to as a surgery of index i (i-surgery in short) on M0.

Since surgery takes place in the interior of the manifold and leaves the boundary
unchanged, it can be performed on manifolds with marked B-boundary as well.
Moreover, the argument above can be reversed to see that if (M1,�1) is obtained
by i-surgery from (M0,�0), then there is an elementary cobordism from (M0,�0)
to (M1,�1) with only one handle of index i. This allows us to conclude that two
oriented manifolds with marked B-boundary are cobordant if and only if they are
surgery equivalent, that is they are related by a finite sequence of surgeries.

Now, let W = M0⇥[0, 1]['H i be a d-dimensional elementary cobordism from M0

to M1 = �W , with H i a trivially attached i-handle, meaning that the attaching map
' is isotopic to an embedding of Si�1⇥Bd�i in some smooth (d�1)-cell C ⇢ M0⇥{1},
which is di↵eomorphic to the standard embedding Si�1 ⇥ Bd�i ! Bd�1. In this
case, the entire handle H i can be thought as standardly embedded in a copy of Bd

+
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attached to M0⇥ [0, 1] through a di↵eomorphism ⇢ : Bd�1 ! C. This gives raise, to
a cobordism W 0 = M0⇥ [0, 1][⇢Bd

+ = M0⇥ [0, 1]['H i[ H i+1, obtained by adding
to W an (i+1)-handle H i+1 that forms a canceling pair with the i-handle H i. Both
W 0 and its dual handlebody W 0 = M0 ⇥ [0, 1] [ Hd�i�1 [' Hd�i are di↵eomorphic
to the trivial cobordism M0 ⇥ [0, 1]. Moreover, W = M0 ⇥ [0, 1] [ Hd�i�1 is a new
elementary cobordism from M0 to M1 = �W = �W .

The replacement of the trivially attached i-handle H i by the trivially attached
(d� i� 1)-handle Hd�i�1, converting the cobordism W into the new cobordism W
between the same manifolds, is called an i/(d� i� 1)-handle trading.

Performing such an i/(d� i� 1)-handle trading produces the same e↵ect on W
as an (i + 1)-surgery along the i-sphere given by the union of the core of H i and a
smooth i-cell properly embedded in M0 ⇥ [0, 1] spanned by the attaching sphere of
H i. Hence, the cobordisms W and W turn out to be cobordant.

We observe that under the condition of isotopic triviality of the attaching map
of the original handle H i (or equivalently of the new handle Hd�i�1), an analogous
i/(d� i�1)-handle trading can also be performed on any (possibly non-elementary)
cobordism (W, ⌘) between two d-manifolds with B-marked boundary (M0,�0) and
(M1,�1), with a given handlebody decomposition. The result is a new cobordism
(W 0, ⌘0) between (M0,�0) and (M1,�1), with a handlebody decomposition obtained
from the original one by replacing the trivially attached i-handle H i with the trivially
attached (d� i� 1)-handle Hd�i�1 and then reordering the handles.

Actually, handle trading together with handlebody deformation can be proved
to generate the cobordism equivalence on the set of all the cobordisms between given
manifolds (M0,�0) and (M1,�1) with marked B-boundary. In other words, two such
cobordisms are cobordant if and only if they admit handlebody decompositions that
are related by handlebody deformation and handle trading.

The case of interest in this paper is that of 1/2-handle trading in dimension 4.
In a 4-dimensional cobordism W , for a 1-handle being trivially attached means
that both its attaching balls are in the same component of �W 0 (orientability is
assumed for cobordisms), while a 2-handle is trivially attached if the attaching
map is determined by a trivial knot with trivial framing in �W 1. Then, given a 4-
dimensional relative 2-handlebody decomposition of a relative cobordism, once the
reduction described in Proposition 1.2.4 has been performed, we can always trade
all the 1-handles for trivially attached 2-handles. This way, we obtain a relative
handlebody without 1-handles representing a new relative cobordism between the
same manifolds, which is cobordant to the original one.

1.3. Ribbon surfaces

A regularly embedded smooth compact surface F ⇢ B4 with is called a ribbon
surface if the Euclidean norm restricts to a Morse function on F with no local
maxima in IntF . Assuming F ⇢ R4

+ ⇢ R4
+ [ {1} 5 B4, this property is topologi-

cally equivalent to the fact that the fourth Cartesian coordinate restricts to a Morse
height function on F with no local minima in IntF . In particular, F has non-empty
boundary BdF ⇢ R3 (actually F has no closed components).

Definition 1.3.1. By a ribbon surface tangle in E⇥ [0, 1]⇥ [0, 1[ , where E =
[0, 1]2 denotes the standard square, we mean a slice S = F \ (E ⇥ [0, 1]⇥ [0, 1[ ) of
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a ribbon surface F ⇢ IntE ⇥ R ⇥ [0, 1[ ⇢ R4
+, such that the intersections @0S =

F \ (E ⇥ {0}⇥ [0, 1[ ) and @1S = F \ (E ⇥ {1}⇥ [0, 1[ ) are transversal and project
to trivial families of regularly embedded arcs in E ⇥ [0, 1[ (trivial means that the
arcs are unknotted and unlinked), by the projection forgetting the third coordinate.
We call @0S and @1S respectively the lower end and the upper end of S. We also
call @S = S \ (E ⇥ [0, 1] ⇥ {0}) = S \ BdF the tangle boundary of S, while the
boundary of S as a surface is BdS = @S [ @0S [ @1S.

Of course, ribbon surface tangles with empty ends reduce to ribbon surfaces
contained in IntE ⇥ ]0, 1[ ⇥ [0, 1[ ⇢ R4

+. Then, without loss of generality up to
isotopy, we can think of any ribbon surface as a tangle with empty ends. In this
way, all the definitions and results given below for ribbon surface tangles specialize
to ribbon surfaces.

A ribbon surface tangle S ⇢ E⇥ [0, 1]⇥ [0, 1[ ⇢ R4
+ can be isotoped, through an

isotopy preserving the fourth coordinate, to make its projection into E⇥ [0, 1] ⇢ R3

a regularly immersed surface, whose self-intersections consist only of disjoint double
arcs as in Figure 1.3.1 (a).

G

(a) (b) (c)

H0
i

H1
j

Figure 1.3.1. A ribbon intersection

We will refer to such a projection as a 3-dimensional diagram of S and use
the same notation S for it (the meaning will be clear from the context). Actually,
any regularly immersed smooth compact surface S ⇢ IntE ⇥ [0, 1] with no closed
components and such that all its self-intersections are as above and S \ (E ⇥ {0})
and S \ (E ⇥ {1}) both consist of trivial regularly embedded arcs, is the diagram
of a ribbon surface tangle uniquely determined up to vertical isotopy. This can be
obtained by pushing IntS up inside IntR4

+ in such a way that all self-intersections
disappear.

Since a ribbon surface tangle S is a surface with no closed components, it admits
a relative handlebody decomposition S = C [H0

1 [ . . . [H0
r [H1

1 [ . . . [H1
s build

on @0S [ @1S with only 0- and 1-handles, where C 5 (@0S [ @1S)⇥ [0, 1] is a collar
of @0S [ @1S in S.

Definition 1.3.2. A relative 1-handlebody decomposition of a ribbon surface
tangle S as above is called adapted when the following conditions are satisfied:

(a) each ribbon self-intersection involves an arc contained in the interior of a 0-han-
dle and a proper transversal arc inside a 1-handle as in Figure 1.3.1 (b) (cf. [68]
for the case of ribbon surfaces);

(b) to each component of C is attached a single 1-handle connecting it to a 0-handle
or to another component of C itself.

– 16 –



The ribbon surface tangle S endowed with such an adapted 1-handlebody decom-
position will be called an embedded 2-dimensional relative 1-handlebody (build on
@0S [ @1S).

According to this definition, the H0
i ’s are disjoint non-singular disks, while the

H1
j ’s are non-singular bands attached to C and to the H0

i ’s, which possibly pass
through the H0

i ’s as shown in Figure 1.3.1 (b). The handlebody decomposition is
induced by the height function, if S is realized as a suitable smooth perturbation
of the boundary of ((C [H0

1 [ . . . [H0
r )⇥ [0, 2/3]) [ ((H1

1 [ . . . [H1
s )⇥ [0, 1/3]) in

E ⇥ [0, 1]⇥ [0, 1[ .

Definition 1.3.3. We say that two embedded 2-dimensional relative 1-handle-
bodies build on the same sets of intervals are equivalent up to embedded 1-defor-
mation, or briefly that they are 1-equivalent, if they are related by a finite sequence
of the following modifications, all keeping those intervals fixed:

(a) adapted isotopy, that is isotopy of embedded relative 1-handlebodies build on
a fixed set of intervals, all adapted except for a finite number of intermediate
critical stages, at which one of the modifications described in Figure 1.3.2 takes
place (between any two such critical stages, we have isotopy of diagrams in R3,
preserving ribbon intersections);

H0
i

H1
j

H0
i

H1
j

H0
i

H1
j

H0
i

H1
j

Figure 1.3.2. Adapted isotopy moves

(b) ribbon intersection sliding, allowing a ribbon intersection to run along a 1-handle
from one 0-handle to another one, as shown in Figure 1.3.3;

... ...
H0

i

H0
j

H1
l

H1
k

H0
i

H0
j

H1
l

H1
k

Figure 1.3.3. Sliding a ribbon intersection along a 1-handle

(c) embedded handles operations, that is addition/deletion of canceling pairs of
0/1-handles and embedded 1-handle slidings (see Figure 1.3.4).
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......

......

H0
i

H0
i

H0
i

H0
j

H0
j H0

j

H1
k

H1
k H1

k

H1
l

H0
i H1

l

Figure 1.3.4. Embedded handle operations

We observe that the second modification of Figure 1.3.2 is actually redundant
in presence of the handle operations of Figure 1.3.4 (cf. proof of Proposition 1.3.9).
It is also worth noting that the 0-handles H0

i and H0
j in Figures 1.3.3 and 1.3.4 can

be assumed to be distinct in all the cases, up to addition/deletion of canceling pairs
of 0/1-handles (where they are always distinct).

Proposition 1.3.4. All the adapted 1-handlebody decompositions of a ribbon
surface tangle S are 1-equivalent as embedded 2-dimensional relative 1-handlebodies.
More precisely, up to isotopy inside the 3-dimensional diagram of S, they are related
to each other by the special cases without vertical disks of the moves of Figures 1.3.3
and 1.3.4, realized inside S in such a way that S itself is kept invariant.

Proof. First of all, we observe that the moves specified in the statement allow us
to realize the following two modifications: 1) split a 0-handle along any regular arc
that avoids ribbon intersections in the diagram, into two 0-handles joined by a new
1-handle, which coincides with a regular neighborhood of the splitting arc; 2) split
a 1-handle at any transversal arc that avoids ribbon intersections in the diagram,
into two 1-handles, by inserting a new 0-handle given by a regular neighborhood of
the splitting arc. We leave the straightforward verification of this to the reader.

Let S = C [H0
1 [ . . .[H0

r [H1
1 [ . . .[H1

s = C [H0
1 [ . . .[H0

r [H1
1 [ . . .[H1

s

be any two 1-handlebody decompositions of a ribbon surface tangle S, which we
denote respectively by H and H. Up to isotopy, we can assume C = C. Moreover,
we can suitably split the 1-handles of H and H, in such a way that any 1-handle
contains at most one ribbon self-intersection of S. Up to isotopy, we can also assume
that the 1-handles of H and H attached to the same component of C and those
forming the same ribbon self-intersection coincide. Let H1 = H1, . . . , Hk = Hk be all
these 1-handles. Then, it su�ces to see how to transform the remaining 1-handles
H1

k+1, . . . , H
1
s into H1

k+1, . . . , H
1
s , without changing H1

1 , . . . , H
1
k .

Calling ⌘i (resp. ⌘j) the cocore of H1
i (resp. H1

j ), we have ⌘1 = ⌘1, . . . , ⌘k = ⌘k,
while the arcs ⌘k+1, . . . , ⌘s can be assumed to be transversal with respect to the
arcs ⌘k+1, . . . , ⌘s. Up to isotopy, we can think of each 1-handle as a tiny regular
neighborhood of its cocore, so that the intersection between H1

k+1 [ . . . [ H1
s and

H1
k+1 [ . . . [H1

s consists only of a certain number h of small four-sided regions.

– 18 –



We eliminate all these intersection regions in turn, by pushing them outside S
along the H1

j ’s. This is done by performing on H moves of the types specified in
the statement of the proposition, as suggested by the Figure 1.3.5, which concerns
the l-th elimination. Namely, in (a) we assume that the intersection is the first one
along ⌘j starting from the shown end-point in @S, then we generate a new 1-handle
H1

s+l by 0-handle splitting to get (b), while (c) is obtained by handle sliding.

ηj ηj ηj

ηi ηi ηi

H1
j H1

j H1
j

H1
i H1

i H1
i

H1
s+l

∂S ∂S ∂S
(a) (b) (c)

H1
s+l

Figure 1.3.5. Eliminating intersections of 1-handles of di↵erent decompositions

After that, H has been changed into a new handlebody decomposition H 0 with
1-handles H1

1 , . . . , H
1
s+h, such that H1

i is the same as above for i  k, while it is
disjoint from the H1

j ’s for i > k. Hence, H1
1 , . . . , H

1
k , H

1
k+1, . . . , H

1
s+h, H

1
k+1, . . . , H

1
s

can be considered as the 1-handles of a relative handlebody decomposition of S
which can be obtained from both H 0 and H by 0-handle splitting. ⇤

Forgetting the handlebody structure, 1-equivalence of embedded 2-dimensional
relative 1-handlebodies induces an equivalence relation between ribbon surface tan-
gles, which we call 1-isotopy.

Definition 1.3.5. Two ribbon surface tangles are called 1-isotopic when they
admit 1-equivalent adapted relative 1-handlebody decompositions (by the above
proposition, this implies that any two such 1-handlebody decompositions of them
are 1-equivalent).

Of course 1-isotopy implies isotopy, but the converse is not known and seems to
be a delicate question. Actually, also the problem of finding a complete set of moves
representing isotopy of ribbon surface tangles is still open, even in the special case
of ribbon surfaces.

As we anticipated in Section 1.2, the problem of whether isotopy of ribbon
surfaces implies 1-isotopy looks like an embedded lower dimensional analog of
the problem of whether di↵eomorphism of 4-dimensional 2-handlebodies implies
2-equivalence. In Section 3.3, we will see how this analogy is supported by the con-
nection between the two concepts given in terms of branched coverings.

Now, we want to provide a description of ribbon surface tangles and 1-isotopy
in terms of certain planar diagrams and moves between them. A planar diagram
of ribbon surface tangle will be based on the projection of a suitable 3-dimensional
diagram S ⇢ IntE⇥[0, 1] into the square ]0, 1[⇥[0, 1], given by forgetting the second
coordinate of E = [0, 1]2.

Since 1-isotopy fixes the ends @0S and @1S, we will consider only the case when
these project regularly into disjoint unions of intervals in ]0, 1[⇥{0} and ]0, 1[⇥{1}
respectively. In this case we say that the ribbon surface tangle S has flat ends.
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We start with the observation that any 3-dimensional diagram of a ribbon surface
tangle S with flat ends, considered as a 2-dimensional complex in IntE ⇥ [0, 1],
collapses to a graph G. We can choose G to be the projection of a smooth simple
spine P of S (simple means that all the vertices have valence one or three) contained
in S�@S. Moreover, we can assume that G meets at exactly one 1-valent vertex each
arc of @0S [ @1S and at exactly one 3- or 4-valent vertex each ribbon intersection
arc of S. In this way, G turns out to have vertices of valence 1, 3 and 4.

We call flat vertices the 1- or 3-valent vertices of G whose inverse image in P is
one vertex with the same valence and singular vertices the 3- or 4-valent vertices of
G located at the ribbon intersections. The inverse image in P of a singular vertex of
G consists of two points along edges of P in the case of valence 4, while it consists
of one point along an edge of P and one end point of P in the case of valence 3.

Finally, we assume G to have three distinct tangent lines at each flat 3-valent
vertex and two distinct tangent lines at each 3- or 4-valent singular vertex.

Up to horizontal isotopy of S mod @0S [ @1S, we can contract its diagram to a
narrow regular neighborhood of the graph G. Then, by considering a planar diagram
of G, we can easily get a planar diagram of S in the sense of the following definition.

Definition 1.3.6. A planar diagram of a ribbon surface tangle with flat ends
is the planar projection of a 3-dimensional diagram S ⇢ IntE ⇥ [0, 1] in the square
]0, 1[ ⇥ [0, 1] given by forgetting the second coordinate of E = [0, 1]2, decorated
consistently with the height function in correspondence of crossings and ribbon
intersections, in such a way that it consists of a certain number of copies of the
spots (a) to (h) in Figure 1.3.6 and some flat bands connecting pairwise the end arcs
of them and those in the projection of @0S [ @1S. A planar diagram whose ribbon
intersections are all modeled on spot (h) will be called a special planar diagram.

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 1.3.6. Local models for planar diagrams

As said above, a planar diagram of a ribbon surface tangle with flat ends arises
as a diagram of a pair (S,G) where G is a graph in a 3-dimensional diagram S, and
this is the right way to think of it.

However, we omit to draw the diagram of the graph G in the pictures of a planar
diagram, since it can be trivially recovered, up to diagram isotopy, as the core of the
diagram itself. In particular, its singular vertices and diagram crossings are located
at the centers of the spots modeled on the three rightmost ones in Figure 1.3.6,
while the flat vertices of G are located at the centers of the spots modeled on the
two leftmost ones in the same figure.

To be precise, there are two choices in recovering the graph G at a singular
vertex, as shown in Figure 1.3.7 for a ribbon intersection of type (h). They give the
same graph diagram of each other, but di↵er for the way the graph is embedded in
S. We consider the move depicted in Figure 1.3.7 as an equivalence move for the pair
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(S,G). Up to this move, which does not change the tangle, G is uniquely determined
also as a graph in S.

Figure 1.3.7. The graph G at a ribbon intersection of type (h)

Like 3-dimensional diagrams, also planar diagrams uniquely determine the rib-
bon surface tangle S up to vertical isotopy. Here, by vertical isotopy we mean an iso-
topy that preserves the first and third coordinates. In other words, the 3-dimensional
height function (as well as the 4-dimensional one) is left undetermined when present-
ing S by a planar diagram. Of course, this height function is required to be consistent
with the restrictions deriving from the local configurations in Figure 1.3.6.

We remark that any planar diagram can be made special by using the moves (S1)
and (S2) depicted in Figure 1.3.8 to remove spots of type (f ) and (g) respectively.

(S1) (S2)

Figure 1.3.8. Making ribbon intersections special

Proposition 1.3.7. Any 3-dimensional diagram of a ribbon surface tangle S
with flat ends @0S and @1S, up to 3-dimensional isotopy mod @0S [ @1S, has a
(special) planar diagram.

Proof. Starting from the 3-dimensional diagram S, we can get a special planar
diagram by the following steps: 1) contract S to a narrow regular neighborhood N of
the graph G; 2) perturb N to make the planar projection of G into a graph diagram
and the projection of N itself regular expect for a finite number of half-twists as in
Figure 1.3.6 (c) and (d); 3) perform moves (S1) and (S2) at each ribbon intersection
of type (f ) and (g) respectively. Then, the proposition immediately follows from the
observation that all this steps can be realized by 3-dimensional isotopies keeping
@0S [ @1S fixed. ⇤

Figures 1.3.9, 1.3.10 and 1.3.11 show how to interpret the 3-dimensional diagram
isotopy in terms of planar diagrams, up to planar isotopy. Actually, moves (S3) and
(S4) could be realized by planar isotopy if we think of the planar diagram just as
representing the surface S, but this not true if we take into account the graph G.

(S3) (S4) (S5)

Figure 1.3.9. Graph changing moves for special planar diagrams
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(S6) (S7)

(S9)(S8)

(S10) (S11)

(S13)(S12)

Figure 1.3.10. Regular isotopy moves for special planar diagrams

(S17) (S18) (S19)

(S20) (S21) (S22)

(S14) (S15) (S16)

Figure 1.3.11. Other 3-dimensional isotopy moves for special planar diagrams

Proposition 1.3.8. Two planar diagrams represent the same 3-dimensional
diagram of a ribbon surface tangle S, up to 3-dimensional isotopy mod @0S [ @1S,
if and only if they are related by finite sequence of planar isotopies (induced by
smooth ambient isotopies of ]0, 1[⇥ [0, 1] mod ]0, 1[⇥ {0, 1} in the projection plane)
and moves (S1) to (S22) as in Figures 1.3.8, 1.3.9, 1.3.10 and 1.3.11. Moreover,
moves (S1) and (S2) are not needed if both the planar diagrams are special.

Proof. The “if” part is trivial, since all the moves (S1) to (S22) represent special
3-dimensional isotopies of S mod @0S [ @1S. To prove the “only if” part, we need
to show that these moves do generate any such 3-dimensional isotopy of the 3-di-
mensional diagrams represented by planar diagrams.

Moves (S1) and (S2) allow us to restrict our attention to special planar diagrams.
All the remaining moves (S3) to (S22) only contain terminal ribbon intersections
of type (h), hence they can be performed in the context of special planar diagrams.
Actually, we will use only them in this special case, proving in this way also the last
part of the statement.
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Now, consider two special planar diagrams representing ribbon surface tangles S0

and S1 as regular neighborhoods of their core graphs G0 and G1, such that there is a
3-dimensional isotopy H : (S0, G0)⇥[0, 1] ! IntE⇥[0, 1] taking (S0, G0) to (S1, G1),
as singular surfaces with ribbon self-intersections, and keeping the tangle ends fixed.
Notice that the intermediate pairs (St, Gt) = H((S0, G0), t) with 0 < t < 1 do not
necessarily project suitably into ]0, 1[⇥ [0, 1] to give planar diagrams.

Of course, we can assume that H is smooth, as a map defined on a pair of
smooth stratified spaces, and that the graph Gt regularly projects to a diagram
in ]0, 1[ ⇥ [0, 1] for every t 2 [0, 1], except a finite number of t’s corresponding to
extended Reidemeister moves for graphs. For such exceptional t’s, the lines tangent
to Gt at its vertices are assumed not to be vertical.

We define � ⇢ G0⇥[0, 1] as the subspace of pairs (x, t) for which St has a vertical
tangency at xt = H(x, t) (if x 2 G is a singular vertex, there are two such tangent
planes and we require that one of them is vertical).

We can assume that � does not meet (@0S0 [ @1S0) ⇥ [0, 1]. Moreover, by a
standard transversality argument, we can perturb H in such a way that:
(a) � is a graph embedded in G0⇥ [0, 1] as a smooth stratified subspace of constant

codimension 1 and the restriction ⌘ : �! [0, 1] of the height function (x, t) 7! t
is a Morse function on each edge of �;

(b) the edges of � locally separate regions consisting of points (x, t) for which the
projection of St into ]0, 1[⇥ [0, 1] has opposite local orientations at xt;

(c) the two planes tangent to any St at a singular vertex of Gt are not both vertical,
and if one of them is vertical then it does not contain both the lines tangent to
Gt at that vertex.

As a consequence of (b), for each flat vertex x 2 G0 of valence one (resp. three)
there are finitely many points (x, t) 2 �, all of which have the same valence one
(resp. three) as vertices of �. Similarly, as a consequence of (c), for each singular
vertex x 2 G0 there are finitely many points (x, t) 2 �, all of which have valence
one or two as vertices of �. Moreover, the above-mentioned vertices of � of valence
one or three are the only vertices of � of valence 6= 2.

Let 0 < t1 < . . . < tk < 1 be the critical levels ti at which one of the following
facts happens:
1) Gti does not project regularly in R2, since there is one point xi along an edge of

G0 such that the line tangent to Gti at H(xi, ti) is vertical;
2) Gti projects regularly in R2, but its projection is not a graph diagram, due to a

multiple tangency or crossing;
3) there is one point (xi, ti) 2 � with xi a uni-valent or a singular vertex of G0;
4) there is one critical point (xi, ti) for the function ⌘ along an edge of �.

Without loss of generality, we assume that only one of the four cases above
occurs for each critical level ti. Notice that the points (x, t) of � such that x 2 G0

is a flat tri-valent vertex represent a subcase of 2 and for this reason they are not
included in case 3.

For t 2 [0, 1]�{t1, . . . , tk}, there exists a su�ciently small regular neighborhood
Nt of Gt in St, such that the pair (Nt, Gt) projects to a special planar diagram,
except for the possible presence of some ribbon intersection projecting in the wrong
way, as in Figure 1.3.6 (g). We fix this problem by inserting an auxiliary positive
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half-twists along the tongues containing those ribbon intersections, as in move (S2).
The resulting singular surfaces, still denoted by Nt, projects to a special planar
diagram.

Actually, we modify the Nt’s all together to get a new isotopy where no wrong
projection of ribbon intersection occurs, so that Nt projects to a special planar
diagram for each t 2 [0, 1]�{t1, . . . , tk}. Namely, at each critical level when a wrong
projection of a ribbon intersection is going to appear in the original isotopy, we insert
an auxiliary half-twist, to prevent the projection from becoming wrong. Such half-
twist remains close to the ribbon intersection until the first critical level when the
projection becomes good again in the original isotopy (remember that 3-dimensional
diagram isotopy preserves ribbon intersections). At that critical level we remove the
auxiliary half-twist. We remark that the second part of condition (c) is violated
when inserting/removing an auxiliary half-twist at critical points of type 2, as it can
be seen by looking at moves (S21) and (S22) where this happens.

We observe that the planar diagram of Nt is uniquely determined up to diagram
isotopy by that of the graph Gt and by the tangent planes of St at Gt. In fact, the
half-twists of Nt along the edges of Gt correspond to the transversal intersections
of � with G⇥ {t} and their signs, depend only on the local behavior of the tangent
planes of St. In particular, the planar diagrams of (N0, G0) and (N1, G1) coincide,
up to diagram isotopy, with the original ones of (S0, G0) and (S1, G1).

If the interval [t0, t00] does not contain any critical level ti, then each single half-
twist persists between the levels t0 and t00, and hence the planar isotopy relating
the diagrams of Gt0 and Gt00 also relate the diagrams of Nt0 and Nt00, except for
possible slidings of half-twists along ribbons over/under crossings. Therefore the
planar diagrams of (Nt0 , Gt0) and (Nt00, Gt00), up to diagram isotopy and moves (S14),
(S15) and (S16).

On the other hand, if the interval [t0, t00] is a su�ciently small neighborhood of
a critical level ti, then the planar diagrams of Nt0 and Nt00 are related by the moves
in Figures 1.3.10 and 1.3.11, depending on the type of ti as follows.

If ti is of type 1, then a positive or negative kink is appearing (resp. disappearing)
along an edge of the core graph. When the kink is positive and (xi, ti) is a local
maximum (resp. minimum) point for ⌘, i.e. two positive half-twists along the ribbon
corresponding to the edge are being converted into a kink (resp. viceversa), the
diagrams of Nt0 and Nt00 are directly related by move (S17). The cases when (xi, ti)
is not an extremal point for ⌘, that is one or two negative half-twists appear (resp.
disappear) together with the positive kink, can be reduced to the previous case by
means of move (S14). On the other hand, by using the regular isotopy moves (S6)
and (S7) in order to create or delete in the usual way a pair of canceling kinks
(without introducing any half-twist) along the ribbon, we can reduce the case of a
negative kink to that of a positive one.

If ti is of type 2, then either a regular isotopy move is occurring between Gt0 and
Gt00 or two tangent lines at a tri-valent vertex xi of the graph project to the same
line in the plane. In the first case, the regular isotopy move occurring between Gt0

and Gt00, trivially extends to one of the moves (S6) to (S13). In the second case,
xi may be either a flat or a singular vertex. If xi is a flat vertex, then the tangent
plane to St at H(xi, t) is vertical for t = ti and its projection reverses the orientation

– 24 –



when t passes from t0 to t00. Move (S19) (modulo moves (S6) and (S14)) describes
the e↵ect on the diagram of such a reversion of the tangent plane. If xi is a singular
vertex, then Nt0 changes into Nt00 by one of the moves (S21) or (S21), where auxiliary
half-twists are inserted according to what we have said above.

If ti is of type 3, then either a half-twist is appearing/disappearing at the tip of
the tongue of surface corresponding to a uni-valent vertex or one of the two bands
at the ribbon intersection corresponding to a singular vertex is being reversed in the
planar projection. The first case corresponds to move (S18) (here we have a positive
half-twist, for dealing with a negative one we combine this move with (S14)). The
second case may happen in two di↵erent ways, depending on which band is being
reversed. If such band is the one passing through the other in the ribbon intersection,
then, we can transform Nt0 into Nt00 by applying move (S20), possibly modulo (S14).
Otherwise, the projection of the ribbon intersection is changing from good to wrong,
and the appearing half-twist is compensated by the auxiliary one up to move (S14).

Finally, if ti is of type 4, a pair of canceling half-twists is appearing or disap-
pearing along an edge of the graph. This is just move (S14).

At this point, to conclude that moves (S3) to (S22) su�ce to realize 3-dimension-
al isotopy between any two special planar diagrams of a given ribbon surface tangle
S, it is left to prove that, given two di↵erent core graphs G0 and G00 of S as above,
the planar diagrams S0 and S00 determined respectively by G0 and G00, are related
by those moves. This is quite straightforward. In fact, by cutting the 3-dimensional
diagram S along the ribbon intersection arcs, we get a new surface S with some
marked arcs. This operation also makes the graphs G0 and G00 into two simple spines
P 0 and P 00 of S relative to those marked arcs (Figure 1.3.12 shows the e↵ect of the
cut at the ribbon intersection in Figure 1.3.7) and to the arcs in @0S [ @1S.

Figure 1.3.12. Cutting a ribbon surface tangle at a ribbon intersection

From intrinsic point of view, that is considering S as an abstract surface and
forgetting its inclusion in R3, the theory of simple spines tells us that the moves
in Figure 1.3.9 su�ce to transform P 0 into P 00. In particular, moves (S3) and (S4)
correspond to the well-known moves for simple spines of surfaces, while (S5) relates
the di↵erent positions of the spine with respect to the marked arcs in the interior of
S. It remains only to observe that, up to a 3-dimensional diagram isotopy preserving
the core graph, hence up to the moves in Figures 1.3.10 and 1.3.11, the portion of
the surface involved in each single spine modification can be isolated in the planar
diagram. ⇤

The next proposition says that, up to 3-dimensional diagram isotopy, 1-isotopy
of ribbon tangles is generated by the local isotopy moves of Figure 1.3.13.

Proposition 1.3.9. Two ribbon surface tangles with flat ends are 1-isotopic if
and only if their planar diagrams can be related by a finite sequence of 3-dimensional
diagram isotopies fixing the tangle ends (cf. Proposition 1.3.8) and moves (S23) to
(S26) in Figure 1.3.13.
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(S23) (S24)

(S25) (S26)

Figure 1.3.13. 1-isotopy moves for planar diagrams

Proof. On one hand, we have to realize the modifications of Figures 1.3.2, 1.3.3
and 1.3.4, disregarding the handlebody structure, by moves (S23) to (S26). Proceed-
ing in the order: one move (S23) su�ces for the upper part of Figure 1.3.2, while
the lower part can be obtained by combining one move (S24) with one move (S25);
Figure 1.3.3 requires three moves for each vertical disk, one (S24), one (S25) and
one (S26); the upper (resp. lower) part of Figure 1.3.4 can be achieved by one move
(S24) (resp. (S25)) for each vertical disk.

On the other hand, the ribbon surfaces of Figure 1.3.13 can be easily provided
with adapted handlebody decompositions, so that the relations just described be-
tween moves (S23) to (S26) and the above modifications can be reversed. In fact,
only the special cases of those modifications with one vertical disk are needed. ⇤

1.4. Branched coverings

In this section we provide a short account of the theory of branched coverings,
with a special emphasis on covering moves in dimension 3 and 4.

Here, we adopt the piecewise-linear approach, which is the most suitable for
a unified exposition of the topic in a general context. However, this approach is
equivalent to the di↵erentiable one for the special cases we will consider in the next
chapters: branched coverings in dimensions 2 and 3 or branched coverings of B4

whose branching set is a ribbon surface.

Definition 1.4.1. A non-degenerate PL map p : P ! Q between compact
PL manifolds of the same dimension d is called a branched covering if there exists
an (d � 2)-dimensional subcomplex Bp ⇢ Q, the branching set of p, such that the
restriction p| : P � p�1(Bp) ! Q � Bp is an ordinary covering of finite degree n.
By the monodromy of p we mean the monodromy !p : ⇡1(Q � Bp, ⇤) ! ⌃n of
this restriction, which is defined up to conjugation in the permutation group ⌃n,
depending on the choice of the base point ⇤ and on the numbering of p�1(⇤). We
call p a simple branched covering if the monodromy of any meridian loop around a
(d� 2)-simplex of Bp is a transposition.

If the subcomplex Bp ⇢ Q in the definition is minimal with respect to the
required property, then we have Bp = p(Sp), where Sp is the singular set of p, that
is the set of points at which p is not locally injective. In this case, both Bp and
Sp, as well as the pseudo-singular set S0

p = Cl(p�1(Bp) � Sp), are (possibly empty)
homogeneously (d� 2)-dimensional complexes.

Since p is completely determined, up to PL homeomorphisms, by the ordinary
covering p| (cf. [19]), we can describe it in terms of the branching set Bp and the
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monodromy !p. In particular, the monodromies of the meridians around the (d�2)-
simplices of Bp determine the structure of the singularities of p. If p is simple, then
every point in the interior of a (d � 2)-simplex of Bp is the image of one singular
point, at which p is topologically equivalent to the complex map z 7! z2, and n� 2
pseudo-singular points.

Starting from Bp ⇢ Q and !p, we can explicitly reconstruct P and p by following
steps: 1) choose a (d� 1)-dimensional splitting complex, that means a subcomplex
C ⇢ Q�{⇤} such that Bp ⇢ C and the restriction !p| : ⇡1(Q�C, ⇤) ! ⌃d vanishes;
2) cut Q along C in such a way that each (d � 1)-simplex � of C gives raise to 2
simplices �� and �+; 3) take n copies of the obtained complex (called the sheets of
the covering) and denote by �±1 , . . . ,�±n the corresponding copies of �±; 4) identify
in pairs the �±i ’s according to the monodromy ⇢ = !p(↵) of a loop ↵ meeting C
transversally at one point of �, that is ��i with �+

⇢(i). Up to PL homeomorphisms, P
is the result of such identification and p is the map induced by the natural projection
of the sheets onto Q.

A convenient representation of p can be given by labeling each (d� 2)-simplex
of Bp by the monodromy of a preferred meridian around it and each generator (in
a finite generating set) of ⇡1(Q, ⇤) by its monodromy, since those loops together
generate ⇡1(Q � Bp, ⇤). Of course, only the labels on Bp are needed when Q is
simply connected. In any case, with a slight abuse of language if Q is not simply
connected, we refer to such a representation as a labeled branching set.

Definition 1.4.2. Two branched coverings p : P ! Q and p0 : P 0 ! Q are
called equivalent if and only if there exists PL homeomorphism h : Q ! Q isotopic
to the identity which lifts to a PL homeomorphism k : P ! P 0.

By the classical theory of ordinary coverings and [19], such a lifting k of h
exists if and only if h(Bp) = Bp0 and !p0h⇤ = !p up to conjugation in ⌃n, where
h⇤ : ⇡1(Q�Bp, ⇤) ! ⇡1(Q�Bp0 , h(⇤)) is the homomophism induced by h. Therefore,
in terms of labeled branching set, the equivalence of branched coverings can be rep-
resented by labeled isotopy.

Before going on, let us say some further words about the representation through
labeled diagrams of the branched coverings in the cases of interest for our purposes.
We remark once again that in all those cases PL and smooth are interchangeable.

We represent an n-fold covering p : P ! S3 (resp. B3) branched over a link
L ⇢ S3 (resp. a tangle T ⇢ B3) by a ⌃n-labeled oriented diagram D of L (resp.
T ), which describes the monodromy of p in terms of the Wirtinger presentation of
⇡1(S3�L) (resp. ⇡1(B3�T )) associated to D. Namely, we label each arc of D by the
monodromy of the standard positive meridian around it. Of course, the Wirtinger
relations impose constraints on the labeling at crossings, and each ⌃n-labeling of D
satisfying such constraints do actually represent an n-fold covering branched over
L (resp. T ). In this context, labeled isotopy can be realized by means of labeled
Reidemeister moves.

For simple coverings, the orientation of D is clearly unnecessary and there are
only three possible ways of labeling the arcs at each crossing. These are depicted
in Figure 1.4.1. The extension from branching links/tangles to branching embedded
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graphs is straightforward. In fact, we only need to take into account extra labeling
constraints and labeled moves at the vertices of the graph.

(i j) (i j) (i j) (i j)

(i j)(i j) (i j) (i k)

(j k)

(j k)

(k l)

(k l)

Figure 1.4.1. Simple labelings of a link/tangle (i, j, k and l all di↵erent)

Now consider an n-fold covering p : P ! B4 branched over a ribbon surface
S ⇢ B4. We represent it by labeled locally oriented planar diagram of S, where
the labels give the monodromy of the meridians in the Wirtinger presentation of
⇡1(B4 � S) associated to the diagram. Actually, since we will only consider simple
coverings, we will never need local orientations.

The same labeling rules as above apply to ribbon intersections as well as to
ribbon crossings, these are depicted in Figure 1.4.2. In particular, at a ribbon in-
tersection the label of the band passing through the other gets conjugated by the
label of this. Notice that, contrary to what happens for ribbon intersections (in the
case of distinct but not disjoint labels), when a ribbon crosses under another one,
its label changes only locally (on the undercrossing region).

(i j) (i j)

(i j) (i j)

(i j) (i j)

(i j) (i j)

(i j)

(i k)

(j k)

(j k)

(i j) (j k)

(j k)

(i j)

(i j)

(k l)

(k l)

(i j)

(i j)(i j)

(k l)

(k l)

Figure 1.4.2. Simple labelings of a ribbon surface (i, j, k and l all di↵erent)

We remark that, if S ⇢ B4 is a labeled ribbon surface representing an n-fold
(simple) covering of p : P ! B4, then L = S \ S3 is a labeled link representing
the restriction p|Bd : BdP ! S3. This is still a n-fold (simple) covering, having the
diagram of S as a splitting complex.

Labeled ribbon surfaces in B4 (that is coverings of B4 simply branched over rib-
bon surfaces) represent all the 4-dimensional 2-handlebodies. In fact, by Montesinos
[52] (cf. Chapter 3), for the connected case it su�ces to take labels from the three
transpositions of ⌃3 (that is to consider 3-fold simple coverings).

Though labeled isotopy of branching ribbon surfaces preserves the covering man-
ifold P up to di↵eomorphisms, we are interested in the (perhaps more restrictive)
notion of labeled 1-isotopy, which preserves P up to 2-deformations (cf. Lemma
3.3.1). This can be realized by means of labeled diagram isotopy and labeled 1-iso-
topy moves, that is diagram isotopy and 1-isotopy moves of Figure 1.3.13 suitably
labeled according to the rules discussed above.

By a covering move, we mean any non-isotopic modification making a labeled
branching set representing a branched covering p : P ! Q into one representing

– 28 –



a di↵erent branched covering p0 : P ! Q between the same manifolds (up to PL
homeomorphisms). We call such a move local, if the modification takes place inside
a cell and can be performed whatever is the rest of labeled branching set outside.
In the figures depicting local moves, we will draw only the portion of the labeled
branching set inside the relevant cell, assuming everything else to be fixed.

As a primary source of covering moves, we consider the following two very general
equivalence principles (cf. [63]). Several special cases of these principles have already
appeared in the literature and we can think of them as belonging to the “folklore”
of branched coverings.

Disjoint monodromies crossing. Subcomplexes of the branching set of a
covering that are labeled with disjoint permutations can be isotoped independently
from each other without changing the covering manifold.

The reason why this principle holds is quite simple. Namely, being the labeling of
the subcomplexes disjoint, the sheets non-trivially involved by them do not interact,
at least over the region where the isotopy takes place. Hence, the relative position
of such subcomplexes is not relevant in determining the covering manifold. Typical
applications of this principle are given by the local covering moves (M2), (R2) and
(R4) in Figures 1.4.4, 1.4.5 and 1.4.7).

It is worth observing that, abandoning transversality, the disjoint monodromies
crossing principle also gives the special case of the next principle when the �i’s are
disjoint and L is empty.

Coherent monodromies merging. Let p : P ! Q be any branched covering
with branching set Bp and let ⇡ : E ! K be a connected disk bundle embedded
in Q, in such a way that: 1) there exists a (possibly empty) subcomplex L ⇢ K for
which Bp\⇡�1(L) = L and the restriction of ⇡ to Bp\⇡�1(K�L) is an unbranched
covering of K �L; 2) the monodromies �1, . . . ,�k relative to a fundamental system
!1, . . . ,!k for the restriction of p over a given disk D = ⇡�1(x), with x 2 K�L, are
coherent in the sense that p�1(D) is a disjoint union of disks. Then, by contracting
the bundle E fiberwise to K, we get a new branched covering p0 : P ! Q, whose
branching set Bp0 is equivalent to Bp, except for the replacement of Bp\⇡�1(K�L)
by K � L, with the labeling uniquely defined by letting the monodromy of the
meridian ! = !1 . . .!k be � = �1 . . .�k.

We remark that, by connectedness and property 1, the coherence condition re-
quired in 2 actually holds for any x 2 K. Then, we can prove that p and p0 have the
same covering manifold, by a straightforward fiberwise application of the Alexan-
der’s trick to the components of the bundle ⇡�p : p�1(E) ! K. A coherence criterion
can be immediately derived from Section 1 of [58].

The coherent monodromy merging principle originated from a classical pertur-
bation argument in algebraic geometry and appeared in the literature as a way to de-
form non-simple coverings between surfaces into simple ones, by going in the opposite
direction from p0 to p (cf. [8]). In the same way, it can be used in dimension 3, both
for achieving simplicity (cf. [25, 26]) and removing singularities from the branching
set. We will do that in the proof of Theorem 6.2.4 by means of the moves (G1)
and (G2) of Figure 1.4.3, which are straightforward applications of this principle.
Actually, similar results could be proved in dimension 4 for labeled singular surfaces
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representing possibly non-simple branched coverings, but we will not consider them
here.

)(G1
σσ 1

σ1

σ1

σ2

σ2

σ2

σ1

σ1

σ2

σ2

)(G2

Figure 1.4.3. Covering moves for labeled graphs (� = �1 · �2)

Finally, we consider the notion of stabilization. This is a particular local covering
move, which makes sense only for branched coverings of Sm or Bm and, di↵erently
from all the previous moves, changes the degree of the covering, increasing it by one.

Stabilization. A branched covering p : P ! Sd (resp. p : P ! Bd) of degree
n, can be stabilized to degree n + 1 by adding to the labeled branching set a trivial
separate (d � 2)-sphere (resp. regularly embedded (d � 2)-disk) labeled with the
transposition (i n+1), for some i = 1, . . . , n.

The covering manifold of such a stabilization is still P , up to PL homeomor-
phisms. In fact, it turns out to be the connected sum (resp. boundary connected
sum) of P itself, consisting of the sheets 1, . . . , n, with the copy of Sd (resp. Bd)
given by the extra trivial sheet n + 1.

By stabilization to degree m (or m-stabilization) of a branched covering p : P !
Sd (resp. p : P ! Bd) of degree n  m we mean the branched covering of degree
m obtained from it by performing m� n stabilizations as above. In particular, this
leaves p unchanged if m = n.

Concerning the cases of interest for this paper, Figure 1.4.4 shows the covering
moves introduced by Montesinos (cf. [56]) for labeled links representing simple cov-
erings of S3, while in Figure 1.4.5 we introduce new local covering moves for labeled
ribbon surfaces representing simple coverings of B4, which we call ribbon moves.

(i j)

(i k)(j k)

(j k) (i j)

(i k)(j k)

(j k) (i j)

(i j)(k l)

(k l) (i j)

(i j)(k l)

(k l)

(M1) (M2)

Figure 1.4.4. Montesinos moves (i, j, k and l all di↵erent)

(R1) (R2)(i j) (i k)

(j k)

(i j) (i k)

(j k)

(i j) (i j)

(k l)

(i j) (i j)

(k l)

Figure 1.4.5. Ribbon moves (i, j, k and l all di↵erent)

The coherent monodromy merging principle provides an easy way to verify that
(M1) and (R1) are covering moves. This is shown in Figure 1.4.6, where the principle
is applied in the first and in the last step for both the moves, the middle step being
just labeled isotopy. Moves (R2) and (M2) are nothing else than simple applications
of the disjoint monodromies principle, as we observed above.
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(i j)

(i j)

(i k)

(i k)

(j k)

(j k)

(j k)

(i j)

(i k)

(j k)

(j k)

(i j)

(i k)

(j k)

(j k)

(i j)

(i k)

(j k)

(j k)

(i j) (i k)

(j k)

(i j) (i k)

(j k)

(i j) (i k)

(j k)

Figure 1.4.6. Moves (M1) and (R1) are local covering moves

In the next proposition, we derive from (R1) and (R2) the auxiliary covering
moves (R3) to (R6) depicted in Figure 1.4.7, which will be very useful in the fol-
lowing chapters.

(R3) (R4)

(R5) (R6)

(i j)

(i j)

(i k)

(i k)

(i j) (i k)

(i k)

(j k)

(j k) (j k)

(i j)

(i j)

(i j)

(k l)

(k l)

(i j) (i j)

(k l)

(k l)

(i j)

(i k)

(j k) (j k)

(j k)

(i k)(i j)

(j k)

Figure 1.4.7. Other moves for labeled ribbon surfaces (i, j, k and l all di↵erent)

Proposition 1.4.3. Up to labeled 1-isotopy, the local moves (R3) to (R6)
depicted in Figure 1.4.7 can be generated the ribbon moves (R1) and (R2), hence
they are covering moves.

Proof. Move (R4) can be easily obtained as the composition of two moves (R2).
Figures 1.4.8, 1.4.9 and 1.4.10 respectively shows how to get moves (R3), (R5) and
(R6) in terms of labeled 1-isotopy and moves (R1).

Here, all the arrows which are not marked by (R1) represent labeled 1-isotopy.
Namely, we use the following labeled 1-isotopy moves: (S24) in Figure 1.4.8; (S1),
(S2), (S5), (S21) and (S25) in Figure 1.4.9; (S14) and (S20) in Figure 1.4.10. ⇤

(i j) (i k) (i j) (i k) (i j) (i k)

(j k)(R1)

Figure 1.4.8. Deriving the covering move (R3)

(i j)

(i k)

(j k)

(i j)

(i k)

(i j)

(i k)

(i j)

(i k)

(i j)

(i k)

(j k)
(R1) (R1)

Figure 1.4.9. Deriving the covering move (R5)
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(i k)(i j)

(j k)

(i k)(i j)

(j k)

(i k)(i j)

(j k)

(i k)(i j)

(j k)

(R1) (R1)

Figure 1.4.10. Deriving the covering move (R6)

Remark 1.4.4. By labeled 1-isotopy and moves above, any n-labeled ribbon
surface tangle S can be made orientable under the mild hypothesis that there are
enough di↵erent labels to generate ⌃n, or equivalently that the covering space rep-
resented by S is connected. In fact, twist transfer (R6) allows us to eliminate non-
orientable bands as shown in Figure 1.4.11.

(R6)
(i j) (i j)

(j k)

(i j) (i j)

(j k)

(i j) (i j)

(j k)

Figure 1.4.11. Making labeled ribbon surfaces orientable (i, j and k all di↵erent)

1.5. Categories

We list here some basic definitions and statements from the general theory of
categories, which are used repeatedly in the paper. A complete reference on the
subject is [46].

Given a category C, we denote by Obj C the set of its objects and by Mor C the
set of morphisms of C, always assuming that C is a small category. Moreover, for any
C,C 0 2 Obj C, the set of morphisms of C with source C and target C 0 are denoted
by MorC(C,C 0).

Definition 1.5.1. Given two functors S, T : C ! D, a natural transformation
⌧ : S ! T is a map that assigns to each object C 2 Obj C a morphism ⌧C : S(C) !
T (C) of D, in such a way that for every morphism f : C ! C 0 of C, the following
diagram commutes.

S(C)
τC T (C)

S(f) T (f)

S(C ′)
τC′

T (C ′)

A natural transformation ⌧ is called natural equivalence if ⌧C is an isomorphisms
for every C 2 Obj C. In this case we write ⌧ : S ' T .

Definition 1.5.2. Two categories C and D are said to be equivalent if there
exist functors T : C ! D and T 0 : D ! C, such that T 0 � T ' idC and T � T 0 ' idD.
In this case we call T (and T 0 as well) an equivalence of categories.

We remind that a functor T : C ! D is faithful (resp. full) if for every
C,C 0 2 Obj C the induced map MorC(C,C 0) ! MorD(T (C), T (C 0)) is injective
(resp. surjective).
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Proposition 1.5.3. A functor T : C ! D is an equivalence of categories if and
only if it is full and faithful and for any object D 2 ObjD there exists an object
C 2 Obj C and an isomorphism �D : D ! T (C).

Proof. Suppose that T is equivalence of categories. Then there exist a functor
T 0 : D ! C and natural equivalences ⌧ : T 0 � T ' idC and � : T � T 0 ' idD. If
T (f1) = T (f2) for some f1, f2 2 MorC(C,C 0), we have T 0(T (f1)) = T 0(T (f2)). Since
T 0(T (fi)) = ⌧�1

C0 � fi � ⌧C we can conclude that f1 = f2. Therefore T is faithful, and
symmetrically T 0 is faithful as well. To see that T is full, take g 2 MorD(T (C), T (C 0))
and let f = ⌧C0 � T 0(g) � ⌧�1

C 2 MorC(C,C 0). Then T 0(T (f)) = ⌧�1
C0 � f � ⌧C = T 0(g).

Since T 0 is faithful, this implies that T (f) = g, which proves that T is full. Moreover,
any D 2 ObjD is isomorphic to T (T 0(D)) through �D. This completes the proof
that the condition is necessary.

To see that the condition is su�cient, suppose that T : C ! D is full and
faithful and that for any object D 2 ObjD there exists an object C 2 Obj C
and an isomorphism �D : D ! T (C). Then define the functor T 0 : D ! C as
T 0(g) = T�1(�D0 � g � ��1

D ) for any g 2 MorD(D,D0), and put ⌧C : T�1(�T (C)) for
any C 2 Obj C. We leave to the reader the rest of the details. ⇤

We remind that a subcategory B ⇢ C is said to be full if MorB(B,B0) =
MorC(B,B0) for any B,B0 2 B, in other word if the inclusion functor ◆ : B ,! C is a
full functor.

Corollary 1.5.4. Given a subcategory B ⇢ C, the inclusion functor ◆ : B ,!
C is an equivalence of categories if and only if B is full and any object of C is
isomorphic to an object of B.

Definition 1.5.5. We say that C is a strict monoidal category if there exists
an associative bifunctor ⇧ : C ⇥ C ! C and an object 1 which is right and left unit
for ⇧ . Then ⇧ is called the product on C and id1 is called the unit of ⇧ .

Being more explicit, the bifunctor ⇧ consists in two associative binary operations

⇧ : Obj(C)⇥Obj(C) ! Obj(C) ,

⇧ : MorC(A,B)⇥MorC(A0, B0) ! MorC(A ⇧B,A0 ⇧B0) ,

such that
1 ⇧A = A = A ⇧ 1 and idA ⇧ idB = idA⇧B

for any A,B 2 Obj C, while

id1 ⇧ f = f = f ⇧ id1 and (f 0 ⇧ g0) � (f ⇧ g) = (f 0 � f) ⇧ (g0 � g)

for any f 2 MorC(A,B), f 0 2 MorC(B,C), g 2 MorC(A0, B0), g0 2 MorC(B0, C 0).

Definition 1.5.6. A strict monoidal category C = (C, ⇧ ,1) is called braided
if for any A,B 2 Obj(C) there exists natural isomorphism �A,B : A ⇧ B ! B ⇧ A
such that

�A,B⇧C = (idB ⇧ �A,C) � (�A,B ⇧ idC) and �A⇧B,C = (�A,C ⇧ idC) � (idA ⇧ �B,C) .

We recall that a family of morphisms ⌫A : A ! B is called natural if for any
morphism f : A ! A0 we have ⌫A0 � f = f � ⌫A.
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Definition 1.5.7. A braided strict monoidal category C = (C, ⇧ ,1, �) is called
autonomous (or rigid) (see [70]) if for every A 2 Obj C it is given a right dual object
A⇤ 2 Obj C and two morphisms

⇤A : 1 ! A⇤ ⇧A (coform) ,

�A : A ⇧A⇤ ! 1 (form) ,

such that the compositions

A �! A ⇧ 1
id⇧⇤A�! A ⇧ (A⇤ ⇧A) �! (A ⇧A⇤) ⇧A

�A⇧id�! 1 ⇧A �! A ,

A⇤ �! 1 ⇧A⇤ ⇤A⇧id�! (A⇤ ⇧A) ⇧A⇤ �! A⇤ ⇧ (A ⇧A⇤)
id⇧�A�! A⇤ ⇧ 1 �! A⇤,

are the identities. Then, given any morphism F : A ! B in C, we define its dual
F ⇤ : B⇤ ! A⇤ as follows:

F ⇤ = (idA⇤ ⇧ �B) � (idA⇤ ⇧ F ⇧ idB⇤) � (⇤A ⇧ idB⇤) .

Definition 1.5.8. A twist in a braided strict monoidal category C = (C, ⇧ ,
1, �) is a family of natural isomorphisms ✓A : A ! A with A 2 Obj C, such that
✓1 = id1 and

✓A⇧B = �B,A � (✓B ⇧ ✓A) � �A,B

for any A,B 2 Obj C.
An autonomous braided strict monoidal category C = (C, ⇧ ,1, �, ⇤,⇤,�)

equipped with a distinguished twist such that ✓A⇤ = (✓A)⇤ for any object A 2 Obj C
is called tortile (the terminology is from [70]).

Many of the categories that we use in the present work are strict monoidal
categories generated by certain set of elementary morphisms and relations between
those morphisms. We outline here the general construction of such categories (see
also section 2 in [70] and the references thereby).

Let S be a (finite) set of elementary objects. We denote by ⇧S = [1m=0S
m the

free monoid generated by S, concretely realized as the set of (possibly empty) finite
sequences of objects in S, with monoidal product ⇧ : ⇧S ⇥ ⇧S ! ⇧S given by
juxtaposition of sequences and unit 1 given by the empty sequence (cf. Corollary
II.7.2 in [46]). Let also G(S,E) be a directed graph, having ⇧S as set of vertices
and a finite set E of arrows (oriented edges), which we call elementary morphisms.
We will always assume that E contains a distinguished loop arrow hidsi starting and
ending at s, for every s 2 S.

Let now G(S,E) be the graph with the same set of vertices ⇧S and arrows

� ⇧ e ⇧ �0 : � ⇧ �0 ⇧ �0 ! � ⇧ �1 ⇧ �0

for every e : �0 ! �1 2 E and every �,�0 2 ⇧S. We call any arrow of this form an
expansion of the elementary morphism e and use the notations � ⇧ e = � ⇧ e ⇧ 1 and
e ⇧ �0 = 1 ⇧ e ⇧ �0. Moreover, we identify e with 1 ⇧ e ⇧ 1 for every e 2 E, in such a
way that G(S,E) ⇢ G(S,E).

Finally, we denote by F (S,E) the free category generated by the graph G(S,E).
We recall from [46] that set of objects of F (S,E) is ⇧S, the set of vertices of the
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graph, while the set of morphisms MorF (S,E)(�0,�1) consists of all paths of con-
secutive arrows from �0 to �1 in G(S,E). Here, the composition is given by path
concatenation and the identity morphisms represented by the paths of length 0.

The notion of expansion can be extended in a unique way to a compositive biac-
tion of ⇧S on the morphisms of F (S,E). Explicitly, this is defined by the formulas

� ⇧ (⌧ ⇧ e ⇧ ⌧ 0) ⇧ �0 = (� ⇧ ⌧) ⇧ e ⇧ (⌧ 0 ⇧ �0) ,

� ⇧ (f1 . . . fn) ⇧ �0 = (� ⇧ f1 ⇧ �0) . . . (� ⇧ fn ⇧ �0) ,

for every e 2 E, every �,�0, ⌧, ⌧ 0 2 ⇧S and every f1, . . . , fn 2 G(E,S) with n � 0.
We still call � ⇧ f ⇧ �0 an expansion of f for every f = f1 . . . fn 2 MorF (S,E). In
particular, for n = 0 we have that identities expand to identities.

Proposition 1.5.9. Given S and E as above and R = {R(�0,�1) |�0,�1 2
⇧S}, with each R(�0,�1) being a (possibly empty) relation on MorF (S,E)(�0,�1),
let C(S,E,R) be the quotient category of F (S,E) modulo the equivalence relations
generated by:

(a) hidsi ' ids for every s 2 S;

(b) � ⇧ ids ⇧ �0 ' id�⇧s⇧�0 for every s 2 S and �,�0 2 ⇧S;

(c) (f ⇧�01)�(�0⇧f 0) ' (�1⇧f 0)�(f ⇧�00) for any f : �0 ! �1, f 0 : �00 ! �01 2 F (S,E);

(d) all the expansions of the relations in R.

Then C(S,E,R) admits a strict monoidal structure defined by

f ⇧ f 0 = (f ⇧ �01) � (�0 ⇧ f 0) = (�1 ⇧ f 0) � (f ⇧ �00)

for any f : �0 ! �1, f 0 : �00 ! �01 2 C(S,E,R), with the unit object 1 being the
empty set.

Proof. In the light of the definitions, the proof is straightforward. ⇤

Definition 1.5.10. We call the strict monoidal category C(S,E,R) defined
in the previous proposition the strict monoidal category generated by the set S of
elementary objects and the set E of elementary morphisms modulo the set R of
elementary relations. In the case when R = B [ A, where B represents defining
axioms of a braided structure in a monoidal category, while E and A represent
respectively the basic morphisms and the defining axioms which endow S with a
certain algebraic structure, for example braided Hopf algebra, we will refer to the
category C(S,E,R) as the braided strict monoidal category freely generated by the
algebraic structure S (cf. [35], Section 4, Definition 1).
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2. 4-dimensional cobordisms and Kirby tangles

In this chapter we introduce 4-dimensional relative 2-handlebody cobordisms
between 3-dimensional 1-handlebodies and their representations in terms of bridged
tangles and Kirby tangles.

Since we allow handlebodies to have more than one 0-handles and even to be
disconnected, we need to generalize the usual notions of bridged tangle and Kirby
tangle to include the case of multiple 0-handles. This is done in Section 2.2.

All the handlebodies in this chapter are assumed to be orientable. According to
the discussion in Section 1.2, this means that 1-handles can be specified just by the
unordered pair of (possibly coinciding) 0-handles where they are attached.

2.1. The categories of relative handlebody cobordisms Chb3+1
n

Here, we define the category Chb3+1
n of 4-dimensional relative 2-handlebody co-

bordisms between 3-dimensional 1-handlebodies with n 0-handles, for any n � 1.
An object in Chb3+1

n is a 3-dimensional relative 1-handlebody M build on the
disjoint union tn

i=1 IntB2
i of n disks, having no 0-handles. With some abuse of nota-

tion we write M = [n
i=1H

0
i [m

j=1 H1
j and call H0

i = B2
i ⇥ [0, 1] the i-th 0-handle of M .

While the H1
j ’s are the 1-handles whose attaching regions are contained in �M0 =

tn
i=1 IntB2

i ⇥ {1} (cf. Definition 1.2.2). We define the front boundary of M as

@M = Cl �M = Cl(BdM � [n
i=1(B

2
i ⇥ {0}) [ (BdB2

i ⇥ [0, 1])) .

Given two objects M0 = [n
i=1H

0
i,0 [m0

j=1 H1
j,0 and M1 = [n

i=1H
0
i,1 [m1

k=1 H1
k,1, let

X(M0,M1) be the 3-dimensional 1-handlebody obtained from M0tM1 by attaching
for any i  n a single 1-handle H1

i 5 B2
i ⇥ [0, 1] between the i-th 0-handles of

M0 and M1, through the identification of B2
i ⇥ {c} ⇢ H1

i with B2
i ⇥ {0} ⇢ H0

i,c

for c = 0, 1. Actually, one could cancel the new 1-handles against some of the 0-
handles, thinking of X(M0,M1) as a 3-dimensional 1-handlebody with n 0-handles
of the form H0

i = H0
i,0 [H0

i,1 [H1
i .

Now, let Y (M0,M1) = tn
i=1B

2
i ⇥ [0, 1]⇥ [0, 1] [ (M0 ⇥ [0, 0.1]) [ (M1 ⇥ [0.9, 1]).

We identify X(M0,M1)⇥[0, 1] with Y (M0,M1), in such a way that X(M0,M1)⇥{0}
is canonically identified with tn

i=1B
2
i ⇥ {0} ⇥ [0, 1] [ (M0 ⇥ {0}) [ (M1 ⇥ {1}) ⇢

Y (M0,M1), while X(M0,M1)⇥ {1} corresponds to tn
i=1(B

2
i ⇥ {1}⇥ [0.1, 0.9]) [m0

j=1

(H1
j,0 ⇥ {0.1}) [m1

k=1 (H1
k,1 ⇥ {0.9}) ⇢ Y (M0,M1). An example of X(M0,M1) and

Y (M0,M1) is presented in Figure 2.1.1, where all the horizontal segments represent
copies of B2.

X(M0,M1)

M1× {1}

M0× {0}

Y (M0,M1)

M1× [0.9, 1]

M0× [0, 0.1]

Figure 2.1.1. The base space of a relative handlebody cobordism in Chb3+1
n
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A morphism W : M0 ! M1 in Chb3+1
n is a 4-dimensional relative 2-handlebody

build on X(M0,M1) without 0-handles, considered up to 2-deformation of relative
handlebodies (cf. Section 1.2). We remind that W is obtained by attaching 1- and
2- handles to W 0 = W�1 = X(M0,M1) ⇥ [0, 1]. According to the setting above,
we identify W 0 with Y (M0,M1), in such a way that M0 and M1 correspond to
M0 ⇥ {0} ⇢ Y (M0,M1) and M1 ⇥ {1} ⇢ Y (M0,M1) respectively. Moreover, we
define the front boundary of W as the following bounded 3-manifold in BdW :

@W = Cl(BdW � (X(M0,M1)⇥ {0})� [n
i=1(BdB2

i ⇥ [0, 1]⇥ [0, 1])) .

In particular, if W has no 1- and 2-handles we have:

@Y (M0,M1) 5 (@M0 ⇥ [0, 1]) [ (X(M0,M1)⇥ {1}) [ (@M1 ⇥ [0, 1]) .

The composition of two morphisms W1 : M0 ! M1 and W2 : M1 ! M2 in
Chb3+1

n is the morphism W : M0 ! M2 defined in the following way. Let W =
W1 [M1W2 be the space obtained from W1 tW2 by identifying the target M1 ⇢ W1

of W1 with the source M1 ⇢ W2 of W2, through the identity. Up to rescaling
the last coordinate, we regard the subspace Y (M0,M1) [M1 Y (M1,M2) ⇢ W as
Y (M0,M2) with certain 1-handles attached to it on the part of the boundary corre-
sponding to the interior of X(M0,M2)⇥ {1}. Namely, we have one (4-dimensional)
1-handle H1

k = (H1
k,1 ⇥ [0.9, 1]) [H1

k,1
(H1

k,1 ⇥ [0, 0.1]) attached to Y (M0,M2) for
each (3-dimensional) 1-handle H1

k,1 of M1 (see Figure 2.1.2 for an example).
Now, all the handles of the relative handlebodies W1 and W2 are attached to
Y (M0,M1) [M1 Y (M1,M2) = Y (M0,M2) [m1

k=1 H1
k , to endow W with a struc-

ture of 4-dimensional relative 2-handlebody build on X(M0,M2). We notice that
@W = @W1 [@M1 @W2.

Y (M0,M1) ∪M1 Y (M1,M2)Y (M0,M2)

Figure 2.1.2. Composing two relative handlebody cobordisms in Chb3+1
n

The identity idM of an object M = [n
i=1H

0
i [m

j=1H
1
j is represented by the product

cobordism M ⇥ [0, 1], whose handlebody structure is given by one 2-handle H2
j =

H1
j ⇥ [0.1, 0.9] ⇢ M ⇥ [0, 1] for each 1-handle H1

j of M (cf. Figure 2.1.3).
Moreover, given any ambient isotopy � = ('t)t2[0,1] of [n

i=1 BdH0
i fixed outside

[n
i=1B

2
i ⇥ {1} and constant in the time intervals [0, 0.1] and [0.9, 1], we consider the

new object M 0 which di↵ers from M only for the attaching maps of the 1-handles
being isotoped through �. In other words, if h1

j is the attaching map of the 1-handle
H1

j in M , then '1�h1
j is the attaching map of the same 1-handle in M 0. Now, for any
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idM WΦ

Figure 2.1.3. Identity and isotopy cobordisms

j  m we attach H1
j ⇥ [0, 1] to [n

i=1H
0
i ⇥ [0, 1] by the map (x, t) 7! ('t(h1

j(x)), t)).
In this way, we obtain a cobordism W� between M and M 0 which has a natu-
ral structure of 4-dimensional relative 2-handlebody build on X(M,M 0), with one
2-handle H2

j given by H1
j ⇥ [0.1, 0.9] ⇢ W� for each 1-handle H1

j of M (cf. Figure
2.1.3). Then, the morphism W� : M ! M 0 represented by such cobordism is an
isomorphism, whose inverse is W��1 : M 0 ! M with ��1 = ('�1

t )t2[0,1].
According to Corollary 1.5.4, the fact that there is an isomorphism between any

two 3-dimensional handlebodies which are obtained by changing the attaching maps
through isotopy, allows us to replace the category Chb3+1

n with the full subcategory
equivalent to it, whose objects are standard handlebodies.

For n � 1, let Gn = {1, . . . , n}2 be the set of ordered pairs of integers between
1 and n (the reason for this notation is that in Chapter 4 we will consider Gn as a
groupoid) and let ⇧Gn = [1m=0Gm

n be the set of (possibly empty) finite sequences of
pairs in Gn.

Definition 2.1.1. Given any ⇡ = ((i1, j1), . . . , (im, jm)) 2 ⇧Gn we define the
standard 3-dimensional 1-handlebody Mn

⇡ = [n
i=1H

0
i [m

j=1 H1
j as follows:

1) for 1  i  n, let H0
i = Ei ⇥ [0, 1] be a copy of E ⇥ [0, 1], with E = [0, 1]2 the

standard square;

2) if m � 1, we consider the 2m boxes

b0m,k = [(k � 0.8)/m, (k � 0.7)/m]⇥ [0.4, 0.6] ⇢ E

b00m,k = [(k � 0.3)/m, (k � 0.2)/m]⇥ [0.4, 0.6] ⇢ E

with 1  k  m, and let b0m,k,i (resp. b00m,k,i) be the copy of b0m,k (resp. b00m,k) in Ei;

3) for 1  k  m, let H1
k be the 1-handle between the 0-handles H0

ik
and H0

jk

given by the identification of b0m,k,ik
⇥ {1} with b00m,k,jk

⇥ {1} through the map
(x, y, 1) 7! (x + 0.5/m, 1� y, 1).

In particular, Mn
6O = [n

i=1H
0
i = [n

i=1Ei ⇥ [0, 1] is the disjoint union of n 3-balls.

If Mn
⇡0

and Mn
⇡1

are two standard 3-dimensional 1-handlebodies with ⇡0,⇡1 2
⇧Gn, then X(Mn

⇡0
,Mn

⇡1
) can be thought as a quotient of tn

i=1Ei⇥ [0, 1], up to canon-
ical identifications of H0

i,0 = Ei ⇥ [0, 1] 5 Ei ⇥ [0, 1] ⇥ {0} and H0
i,1 = Ei ⇥ [0, 1] 5

Ei ⇥ [0, 1]⇥ {1} respectively with Ei ⇥ [0, 0.1] and Ei ⇥ [0.9, 1].
The standard 3-dimensional 1-handlebodies M3

⇡0
and M3

⇡1
for ⇡0 = ((1, 3), (1, 2),

(2, 2), (3, 3)) and ⇡1 = ((1, 1), (1, 2), (2, 3), (2, 3)), which are respectively isomorphic
to M0 and M1 of Figure 2.1.1, are shown on the left side of Figure 2.1.4. Here, the
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arrows indicate the prescribed identifications. On the right side of the same Figure
2.1.4 is shown a copy of X(M3

⇡0
,M3

⇡1
) described as a quotient of t3

i=1Ei ⇥ [0, 1].

X(M3
π0

,M3
π1

)

E1× [0, 1] E2× [0, 1] E3× [0, 1]

M3
π0

and M3
π1

Figure 2.1.4. Standard 3-dimensional 1-handlebodies

Proposition 2.1.2. For any n � 1, the category Chb3+1
n is equivalent to its

full subcategory, whose objects are the standard 3-dimensional 1-handlebodies Mn
⇡

with ⇡ 2 ⇧Gn, through the inclusion functor.

Proof. This is an immediate consequence of Corollary 1.5.4. ⇤

From now on, Chb3+1
n will denote the full subcategory given in Proposition 2.1.2.

The set ⇧Gn, can be endowed with a monoidal structure, where the product
⇡ ⇧ ⇡0 is the juxtaposition of ⇡ and ⇡0 and the unit element is the empty sequence.
This induces a monoidal structure on Obj Chb3+1

n = {M3
⇡ | ⇡ 2 ⇧Gn}, which will be

denoted in the same way:
Mn

⇡ ⇧Mn
⇡0 = Mn

⇡⇧⇡0 .

We observe that the unit of this product is Mn
6O, the disjoint union of n 3-balls,

and that given ⇡ = ((i1, j1), . . . , (im, jm)) 2 ⇧Gn we have:

Mn
⇡ = Mn

(i1,j1) ⇧ . . . ⇧Mn
(im,jm).

Moreover, Mn
⇡ ⇧Mn

⇡0 is the 3-dimensional handlebody obtained from Mn
⇡ tMn

⇡0

by glueing the i-th 0-handle of Mn
⇡ to that of Mn

⇡0 through the map (1, y, z) 7! (0, y, z)
and then suitably reparametrizing the first coordinate.

Now, we extend the monoidal structure on Obj Chb3+1
n to the whole category

Chb3+1
n in the following way. Let W : Mn

⇡0
! Mn

⇡1
and W 0 : Mn

⇡00
! Mn

⇡01
be two

morphisms in Chb3+1
n . Starting from X(Mn

⇡0
,Mn

⇡1
) tX(Mn

⇡00
,Mn

⇡01
), we glue the i-th

0-handle of X(Mn
⇡0

,Mn
⇡1

) (consisting of the i-th 0-handles of Mn
⇡0

and Mn
⇡1

joined
by the 1-handle H1

i ) to that of X(Mn
⇡00

,Mn
⇡01

) through the map (1, y, z) 7! (0, y, z).
Then, we identify the result of the gluing with X(Mn

⇡0
⇧Mn

⇡00
,Mn

⇡1
⇧Mn

⇡01
), by think-

ing all the three X spaces involved as quotients of tn
i=1Ei ⇥ [0, 1] and applying a

reparametrization of the first coordinate depending on the last one, that is a di↵eo-
morphism (x, y, z) 7! (hz(x), y, z) with hz an increasing function of x for every z.
The same construction crossed by [0, 1], gives Y (Mn

⇡0
⇧Mn

⇡00
,Mn

⇡1
⇧Mn

⇡01
) starting from

Y (Mn
⇡0

,Mn
⇡1

) t Y (Mn
⇡00

,Mn
⇡01

).
We define the product W ⇧ W 0 to be the 4-dimensional relative 2-handlebody

build on X(Mn
⇡0
⇧Mn

⇡00
,Mn

⇡1
⇧Mn

⇡01
) that one obtains by starting from W tW 0 and
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performing the construction above to the subspace Y (Mn
⇡0

,Mn
⇡1

)tY (Mn
⇡00

,Mn
⇡01

). The
handlebody structure on W ⇧W 0 consists of all the handles of W and W 0.

The unit of the product between morphisms is the “empty” relative handlebody
idMn

6O
= Y (Mn

6O,Mn
6O) : Mn

6O ! Mn
6O without any handle, that is the disjoint union of

n 4-balls.

Proposition 2.1.3. The product ⇧ : Chb3+1
n ⇥ Chb3+1

n ! Chb3+1
n makes Chb3+1

n

into a strict monoidal category, for any n � 1.

Proof. The proof consists into observing that ⇧ is associative and verifying the
identities which follow the Definition 1.5.5 of a strict monoidal category. This is
straightforward and we leave it to the reader. ⇤

For n > 1 the category Chb3+1
n may have quite complex structure, but what we

really want is to understand the category Chb3+1
1 (n = 1) of connected cobordisms

between connected 3-dimensional handlebodies. In this perspective, the categories
with n > 1 represent an intermediate step in order to establish in a natural way
the connection between the morphisms in Chb3+1

1 and the morphisms of the cate-
gory of labeled ribbon surfaces coming from the description of the 4-dimensional
handlebodies as n-fold branched coverings. In particular, we need a faithful functor
(or embedding) from Chb3+1

1 ! Chb3+1
n whose image defines a subcategory of Chb3+1

n

equivalent to Chb3+1
1 .

First of all, we have that the inclusion ⇧Gk ⇢ ⇧Gn with 1  k < n induces in-
clusions Mk

⇡ ⇢ Mn
⇡ , X(Mk

⇡0
,Mk

⇡1
) ⇢ X(Mn

⇡0
,Mn

⇡1
) and Y (Mk

⇡0
,Mk

⇡1
) ⇢ Y (Mn

⇡0
,Mn

⇡1
),

for any ⇡,⇡0,⇡1 2 ⇧Gk.
Then, we define the faithful functor ◆nk : Chb3+1

k ⇢ Chb3+1
n , by putting ◆nk(Mk

⇡ ) =
Mn

⇡ for any Mk
⇡ 2 Obj Chb3+1

k and ◆nk(W ) = W [Y (Mk
⇡0

,Mk
⇡1

) Y (Mn
⇡0

,Mn
⇡1

) for any
W : Mk

⇡0
! Mk

⇡1
2 Mor Chb3+1

k .

Definition 2.1.4. Given n > k � 1, let ⇡n99)k = ((n, n � 1), . . . , (k + 1, k))
and let id⇡n99)k be the identity morphism of Mn

⇡n99)k
. Then, the stabilization functor

"n
k : Chb3+1

k ! Chb3+1
n is defined by:

"n
k Mk

⇡ = Mn
⇡n99)k

⇧ ◆nk(Mk
⇡ ) for any Mk

⇡ 2 Obj Chb3+1
k ,

"n
k W = id⇡n99)k⇧ ◆nk(W ) for any W 2 Mor Chb3+1

k .

Moreover, we put Chb3+1,c
n = "n

1 (Chb3+1
1 ) ⇢ Chb3+1

n .

We will show in Section 2.3 that the restriction of "n
k to Chb3+1,c

k gives a cate-
gory equivalence between the Chb3+1,c

k and Chb3+1,c
n . In particular, Chb3+1

1 5 Chb3+1,c
n

for any n � 1. Even if the proof of this will be somewhat technical, the reader
should find the statement quite obvious. Indeed Mn

⇡n99)1
is a 3-ball and therefore

the product cobordism id�1!n is a 4-ball. Hence, we may think of the cobordism
"n

1 W = id⇡n99)1⇧ ◆n1 (W ) as the handlebody obtained by attaching the 1- and 2-handles
of W to a single 4-ball.

2.2. Bridged tangles and labeled Kirby tangles

We recall that in the literature can be found two di↵erent diagrammatic de-
scriptions of 4-dimensional 2-handlebodies with a single 0-handle: bridged links and
Kirby diagrams. Both are based on the representation of the attaching maps of the
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1- and 2-handles in the boundary of the 0-handle. In the case of a bridged link (cf.
[33, 34]), the 1-handles are represented directly by drawing their attaching regions
(disjoint pairs of 3-balls), while in the case of a Kirby diagram (cf. [38, 22]) the
1-handles are represented instead by a “dotted” 0-framed trivial knot.

In [34] bridged tangles are used for describing cobordisms in Chb3+1
1 , while in [35,

36] ribbon tangles, equivalent under Kirby moves, are used to describe the morphisms
of the category Cob2+1

1 of 2-framed relative 3-cobordisms which, as explained in
Chapter 5, is the “framed boundary” of Chb3+1

1 .
Here we will generalize the notion of bridged tangles and Kirby tangles in order

to be able to describe the morphisms of Chb3+1
n , i.e. 4-dimensional relative 2-handle-

bodies build on X(Mn
⇡0

,Mn
⇡1

), where Mn
⇡0

and Mn
⇡1

are standard 3-dimensional han-
dlebodies with n 0-handles.

Definition 2.2.1. For any n � 1 and any two finite sequences of ordered pairs
⇡0 = ((i01, j

0
1), . . . , (i

0
m0

, j0
m0

)) and ⇡1 = ((i11, j
1
1), . . . , (i

1
m1

, j1
m1

)) in ⇧Gn, a bridged
tangle from ⇡0 to ⇡1 consists of the following data:

1) the space Zn = tn
i=1Ei ⇥ [0, 1] disjoint union of n numbered copies of E ⇥ [0, 1],

where E = [0, 1]2 denotes the standard square, with the subspaces and maps
(cf. Definition 2.1.1)

B0
in,k = b0m0,k,i0k

⇥ [0, 0.1] ⇢ Ei0k
⇥ [0, 1]

B00
in,k = b00m0,k,j0

k
⇥ [0, 0.1] ⇢ Ej0

k
⇥ [0, 1]

⇢in,k : B0
in,k! B00

in,k given by (x, y, z) 7! (x + 0.5/m0, 1� y, z)

9>>>>>=
>>>>>;

for 1  k  m0 ,

B0
out,k = b0m1,k,i1k

⇥ [0.9, 1] ⇢ Ei1k
⇥ [0, 1]

B00
out,k = b00m1,k,j1

k
⇥ [0.9, 1] ⇢ Ej1

k
⇥ [0, 1]

⇢out,k :B0
out,k!B00

out,k given by (x, y, z) 7! (x+0.5/m1, 1�y, z)

9>>>>>=
>>>>>;

for 1  k  m1;

2) an orientation preserving embedding � : P ! tn
i=1 IntEi⇥]0.1, 0.9[ ⇢ Zn, where

P = tr
k=1Pk with Pk = P 0

k t P 00
k a copy of B3(0, 0, 2) t B3(0, 0,�2) ⇢ R3, the

union of the pair of unitary 3-balls with centers (0, 0,±2); we put

B0
k = �(P 0

k)

B00
k = �(P 00

k )

⇢k : B0
k ! B00

k given by �(x, y, z) 7! �(x, y,�z)

9>>>>=
>>>>;

for 1  k  r ;

3) an embedding  : Q ! tn
i=1 IntEi⇥ [0.1, 0.9]�[r

k=1(IntB0
kt IntB00

k) ⇢ Zn, with
Q the space obtained by cutting the disjoint union ts

h=1Ah of s copies of the
annulus A = S1 ⇥ [0, 1] along a set of meridian arcs ↵j = {pj}⇥ [0, 1] ⇢ Ahj for
j = 1, . . . , c; denoting by ↵0j and ↵00j the two copies of ↵j in BdQ, we require that:
 (Q) meets the boundary of the ambient space transversally in [c

j=1 (↵0jt↵00j ) ⇢
[r

k=1(BdB0
k [ BdB00

k) [m0
k=1 (BdB0

in,k [ BdB00
in,k) [m1

k=1 (BdB0
out,k [ BdB00

out,k) and
([r

k=1⇢k [m0
k=1 ⇢in,k [m1

k=1 ⇢out,k)( (↵0j)) =  (↵00j ) for any j = 1, . . . , c.

We will call B0
in,k and B00

in,k with k = 1, . . . ,m0 (resp. B0
out,k and B00

out,k with
k = 1, . . . ,m1) the in-boxes (resp. out-boxes) of the bridged tangle, while the 3-balls
B0

k and B00
k with k = 1, . . . , r will be called internal balls.
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By a bridged tangle diagram we mean the set of the in- and out-boxes together
with the images of � and  in Zn. We will use the notation T (�, ) for both the
bridged tangle determined by � and  and its diagram.

In a bridged tangle diagram we think of  (Q) as a set of framed curves. In the
figures, we always represent such a framed curve as a narrow band and draw the
base curve C as a thick curve and the framing curve C 0 as a “parallel” thin curve
(cf. Definition 1.2.1). Of course, the choices of the base curve and the framing curve
for di↵erent components of �(Q) have to be compatible with the map [r

k=1⇢k [m0
k=1

⇢in,k [m1
k=1 ⇢out,k, according to property 3 in Definition 2.2.1.

An example of a bridged tangle diagram is presented in Figure 2.2.1. Here, ⇡0

and ⇡1 are as in Figure 2.1.4 and the arrows specify the pairing of boxes and balls.

∂Mn
π1
× [0, 1]

∂Mn
π0
× [0, 1]

X(Mn
π0

,Mn
π1

)

Figure 2.2.1. Bridged tangle representation of a cobordism

Proposition 2.2.2. Given ⇡0,⇡1 2 ⇧Gn, a bridged tangle T = T (�, ) from
⇡0 to ⇡1 specifies a unique 4-dimensional relative 2-handlebody WT = W (�, ) build
on X(Mn

⇡0
,Mn

⇡1
) without 0-handles. Viceversa, any 4-dimensional relative 2-handle-

body build on X(Mn
⇡0

,Mn
⇡1

) without 0-handles can be specified in this way by a
bridged tangle, up to isotopy of the attaching maps of the 2-handles.

Proof. Given the bridged tangle T (�, ), let Zn be as in Definition 2.2.1 and
let S be the space obtained from Zn by removing the interiors of all the in-boxes
B0

in,k and B00
in,k and all the out-boxes B0

out,k and B00
out,k and identifying their bound-

aries through the maps ⇢in,k and ⇢out,k respectively. Then S can be identified in a
canonical way with @Y (Mn

⇡0
,Mn

⇡1
) (cf. Figure 2.2.1). The subspace S0 ⇢ S coming

from tn
i=1Ei⇥ [0.1, 0.9] can be canonically identified with X(Mn

⇡0
,Mn

⇡1
)⇥ {1}. Then

� specifies the attaching maps of r 1-handles H1
1 , . . . , H

1
r to X(Mn

⇡0
,Mn

⇡1
) ⇥ [0, 1].

The relative 1-handlebody W 1 deriving from attaching these 1-handles, can be re-
alized as the quotient of S0 given by the identification of the internal balls B0

k and
B00

k through the map ⇢k for k = 1, . . . , r. Under this identification  represents
the attaching maps of s 2-handles H2

1 , . . . , H
2
s in the boundary W 1 in terms of

framed knots, assuming the attachment longitudinal along each 1-handle (cf. Sec-
tion 1.2). Observe that the requirements in point 3 of Definition 2.2.1 insure that the
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framing of the 2-handles is well-defined. Then, W (�, ) is the relative handlebody
(X(Mn

⇡0
,Mn

⇡1
)⇥ [0, 1]) [r

k=1 H1
k [s

h=1 H2
h.

At this point, the second part of the proposition just follows from the fact that
the construction above can be reversed starting from any 4-dimensional relative 2-
handlebody build on X(Mn

⇡0
,Mn

⇡1
) without 0-handles, once the attaching maps of

the 2-handles have been isotoped to be parallel to the core along each 1-handle. ⇤

Now we want to interpret 2-equivalence of 4-dimensional relative 2-handlebodies
in terms of bridged tangles. To this aim, let us consider the following operations on
a bridged tangle T (�, ).

(a) Isotopy of � and  , which preserves the intersections of  (Q) with the in- and
out-boxes and with the internal balls, as well as the conditions in point 3 of
Definition 2.2.1.

(b) Pushing through an internal pair of 3-balls (cf. Figure 2.2.2). Let B0
k and B00

k be
a pair of internal balls and put �0k = �|P 0k and �00k = �|P 00k . Assume that we are
given: 1) a 3-ball B ⇢ tn

i=1 IntEi ⇥ ]0.1, 0.9[, such that B0
k ⇢ IntB, while BdB

is disjoint from all the internal balls and meets transversally  (Q) along the
image of some meridian arcs like those in point 3 of Definition 2.2.1; 2) a 3-ball
C ⇢ IntB00

k and an orientation preserving di↵eomorphism ⌘ : Cl(B � B0
k) !

Cl(B00
k � C) such that ⌘|Bd B0

k
= ⇢k|Bd B0

k
. Then, we modify T (�, ) as follows:

replace �0k and �00k with �0k : P 0
k ! B0

k = B and �00k : P 00
k ! B00

k = C respectively,
such that ⌘(�0k(x, y, z)) = �00k(x, y,�z) for any (x, y, z) 2 BdP 0

k; delete the part
of the diagram in Cl(B � B0

k) and insert its image through ⌘ in Cl(B00
k � C);

perform all the consequent modifications on the space Q and the map  . An
example is depicted in Figure 2.2.2 (the two balls B0

k and B00
k can lie in two

di↵erent connected components of Zn).

B′
k = B

B′′
k = C

B

B

′
k

B′′
k

Figure 2.2.2. Pushing through an internal pair of 3-balls

(c) Pushing through an in/out pair of boxes. This move is analogous to (b), but
instead of 3-balls one works with boxes and, as an additional final step, one has
to rescale the new boxes to make them as in point 1 of Definition 2.2.1.
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(d) 2-handle sliding. Given two di↵erent annuli Ai and Aj with i, j = 1, . . . , s as
in point 3 of Definition 2.2.1, let Qi and Qj the corresponding subspaces of Q.
Then the move consists in taking a parallel copy  (Qj)k of  (Qj) in the diagram
and replacing  (Qi) by the band connected sum of it with  (Qj)k, through a
band � connecting any two components of  (Qi) and  (Qj)k contained in the
same component of Zn (cf. Figure 2.2.3).

B′
kB′

k
B′′

k B′′
k

Ψ(Qi) Ψ(Qj)

β Ψ(Qj)

Ψ(Qi) Ψ(Qj)

Figure 2.2.3. A 2-handle sliding

(e) Adding/deleting a canceling 1/2-pair, that is two internal balls B0
k and B00

k which
are joined by a single band and do not intersect elsewhere (Q) (cf. Figure 2.2.4).

B′
k B′′

k

Figure 2.2.4. A canceling 1/2-pair

Definition 2.2.3. Two bridged tangles are said to be 2-equivalent if they are
related by a finite sequence of moves of types (a) to (e).

Proposition 2.2.4. Given ⇡0,⇡1 2 ⇧Gn, two bridged tangles T (�1, 1) and
T (�2, 2) from ⇡0 to ⇡1 are 2-equivalent in the sense of the previous definition if
and only if the corresponding 4-dimensional relative 2-handlebodies W (�1, 1) and
W (�2, 2) are 2-equivalent as relative handlebodies.

Proof. First of all, we observe that the moves (a) to (e) on a bridged tangle
T (�, ) represent 2-deformations of the handlebody W (�, ). In particular, (b)
represents isotopy of the attaching maps of the 2-handles and 1-handles slidings
over the k-th 1-handle of W (�, ).

Viceversa, assume that W (�1, 1) and W (�2, 2) are 2-equivalent. Since they
are relative handlebodies without 0-handles, there is a 2-deformation relating them
that does not involve addition/deletion of canceling pairs of 0- and 1-handles (see
Proposition 1.2.4). Such a 2-deformation consists of a finite sequence of the following
modifications: isotopies of the attaching maps of the 1-handles and of the 2-handles;
addition/deletion of pairs of canceling 1- and 2-handles; sliding of a 1- or 2-handle
over another 1- or 2-handle. Isotopy and 1-handle sliding on a handlebody W (�, )
can be represented by moves (a), (b) and (c) on the bridged tangle T (�, ), while
the other two modifications just correspond to moves (d) and (e). ⇤

In the light of Propositions 2.2.2 and 2.2.4, for any n � 1 we can form a strict
monoidal category of bridged tangles Tn equivalent to H3+1

n through the functor
induced by the map T (�, ) 7! W (�, ).
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The objects of Tn are the sequences in ⇧Gn. Given two sequences ⇡0,⇡1 2 ⇧Gn,
a morphism in Tn with source ⇡0 and target ⇡1 is a bridged tangle from ⇡0 to ⇡1,
considered up to 2-equivalence of bridged tangles.

If T1 = T (�1, 1) : ⇡0 ! ⇡1 and T2 = T (�2, 2) : ⇡1 ! ⇡2 are two morphisms
in Tn, then their composition is the morphism T = T (�, ) : ⇡0 ! ⇡2 defined as
follows. Translate T2 in the space Zn = tn

i=1Ei ⇥ [1, 2], glue it to T1 by identifying
the two copies of tn

i=1Ei⇥{1} in Zn and Zn, and rescale the third coordinate by the
factor 1/2. In the identification the out-boxes of T1 are glued to the corresponding in-
boxes of T2 to give a new boxes that, up to smoothing the corners, can be considered
as extra internal balls. Then, under the above identification, T is determined by
� = �1 t �2 extended to include those extra internal balls and by  =  1 t 2.

The identity morphism id⇡ of a sequence ⇡ 2 ⇧Gn is represented by the bridged
tangle from ⇡ to ⇡ without any internal ball and with a single band connecting any
in-box with the corresponding out-box. Notice that the two bands connecting a pair
B0

k and B00
k of in-boxes with the corresponding pair of out-boxes, give the attaching

map of the 2-handle of idMn
⇡

between the two copies (in the source a in the target)
of the k-th 1-handle of Mn

⇡ .
Finally, Tn has a strict monoidal structure whose product (which we will denote

again by ⇧ ) is given by juxtaposition on the objects, while on the morphisms T ⇧T 0

is given by translating T 0 in the space Z 0
n = tn

i=1[1, 2]⇥ [0, 1]⇥ [0, 1], glueing the two
tangles by identifying the corresponding copies of {1}⇥ [0, 1]⇥ [0, 1] in Zn and Z 0

n

and then applying a reparametrization of the first coordinate depending on the last
one, that is a di↵eomorphism (x, y, z) 7! (hz(x), y, z) with hz increasing function of
x for every z. The unit of the product between morphisms is the empty tangle.

Describing the cobordisms in Chb3+1
n through bridged tangles presents two main

di�culties. The first one is that the space Zn in which lives the tangle diagram
is not connected when n > 1. The second and most important one is that from
a diagrammatic point of view the “pushing through 1-handle” move is highly non-
local. Indeed, part of the diagram which is in the neighborhood of one 3-ball appears
in the a neighborhood of another 3-ball; moreover, this last ball can even be in a
di↵erent connected component of the diagram.

Introducing n-labeled Kirby tangles resolves both these problems. Basically the
idea is to allow only the use of bridged tangle diagrams in special form. Obviously,
this requires a specification of the 2-equivalence moves relating two such special
diagrams.

Definition 2.2.5. A bridged tangle T (�, ) will be called a special bridged
tangle if, using the same notation as in Definition 2.2.1, the following properties are
satisfied:

1) the map pr : Zn = tn
i=1Ei ⇥ [0, 1] ! E ⇥ [0, 1] projecting each copy Ei ⇥ [0, 1]

onto E ⇥ [0, 1] by the identity is injective on �(P ) [ (Q);

2)  (Q) meets any internal ball B0
k (resp. B00

k) only in the disks D0
k = �(S2

+(0, 0, 2))
⇢ BdB0

k (resp. D00
k = �(S2

�(0, 0,�2)) ⇢ BdB00
k) image of the copy in Pk of

the upper half-sphere S2
+(0, 0, 2) ⇢ BdB3(0, 0, 2) (resp. the lower half-sphere

S2
�(0, 0,�2) ⇢ BdB3(0, 0,�2)); moreover,  (Q) meets each in- or out-box B0

k

(resp. B00
k) only in points of the half-space y > 0 (resp. y < 0);
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3) an embedding � : C ! E ⇥ ]0.1, 0.9[ is given, with C = tr
k=1Ck and Ck the

convex hull of Pk, such that �|P = pr � � and �(C) \ pr( (Q)) = pr(�(P ) \
 (Q)); we denote by Dk = �(B2) the image of the copy in Ck of the standard
disk B2 ⇢ R2 ⇢ R3 (cf. Figure 2.2.5).

Representing a special bridged tangle diagram is much simpler then a general
one. Indeed, thanks to property 1, instead of using n copies of E⇥ [0, 1], one for each
connected component of the diagram, we can draw the diagram directly in E⇥ [0, 1].
Namely, we consider pr � (� t  ) ⇢ E ⇥ [0, 1] and label each part of the diagram
with a number from 1 to n, to keep track of the original component where it lives.

Moreover, by properties 2 (first part) and 3, we can draw only the disk Dk

in place of each pair of internal 3-balls pr(B0
k) and pr(B00

k), extending the ribbons
inside �(Ck) by the image of vertical bands under the identification � : Ck !
�(Ck), until they intersect it as it is shown on the right side of Figure 2.2.5.
As usual, in the diagrams we mark the unknot BdDk by a dot to indicate that
it stands for the attaching map of a 1-handle.

i

j

i

pr(

pr(

B′
k)

B′′
k )

D′
k)

D′′
k)

Dk

j j

i

i
j

pr(

pr(

Figure 2.2.5. Dot notation for a pair of internal balls in a special bridged tangle

Taking into account the last part of property 2, we do a similar thing for the k-th
pair of in-boxes (resp. out-boxes), but adding an extra open framed component. Such
extra component passes once through the resulting dotted component and ends in a
canonical pair of intervals in E⇥{0} (resp. E⇥{1}), which represent the k-th element
of the source (resp. target) of the tangle (cf. definition below), as shown in Figure
2.2.6. The 3-cell �(Ck) and the disk Dk in the above construction, are respectively
replaced by the pair of boxes joined by the bent rectangular tube drawn in the
figure and by the meridian rectangle of it. The corresponding dotted unknot and
the involved framed components has been isotoped in a di↵erent standard position

j
i

j

i
ji

i

j

i
j

j

B′
in,k) B′′

in,k)

B′
out,k) B′′

out,k)

j

i i

j

ii j

i jpr( pr(

pr( pr(

Figure 2.2.6. Dot notation for pairs of in/out-boxes in a special bridged tangle
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to make the diagram simpler. After such isotopy, the whole configuration is assumed
to have the standard form depicted in the figure.

In order to introduce the notion of n-labeled Kirby tangle, we need a preliminary
definition. Given any finite sequence ⇡ = ((i1, j1), . . . , (im, jm)) 2 ⇧Gn, let I⇡ =
((a0m,1, a

00
m,1), . . . , (a

0
m,m, a00m,m)) the sequence of pairs of intervals in E = [0, 1]2, each

labeled with the corresponding element of ⇡, defined for 1  k  m by

a0m,k = [(k � 0.8)/m, (k � 0.7)/m]⇥ {0.5} ,

a00m,k = [(k � 0.3)/m, (k � 0.2)/m]⇥ {0.5} .

Definition 2.2.6. Let n � 1 and ⇡0 = ((i01, j
0
1), . . . , (i

0
m0

, j0
m0

)) and ⇡1 =
((i11, j

1
1), . . . , (i

1
m1

, j1
m1

)) be two sequences of in ⇧Gn. Then an n-labeled (admissi-
ble) Kirby tangle in E ⇥ [0, 1] from I⇡0 to I⇡1 consists of the following data:

1) r dotted unknots spanning disjoint flat disks D1, . . . , Dr ⇢ IntE ⇥ ]0, 1[;

2) a tangle consisting of s framed curves C1, . . . , Cs (cf. Section 1.2) regularly em-
bedded in IntE ⇥ [0, 1] and transversal with respect to those disks, such that
each open framed curve Ch joins a pair of intervals (a0m0,k⇥ {0}, a00m0,k⇥ {0}) for
some (a0m0,k, a

00
m0,k) 2 I⇡0 or (a0m1,k⇥{1}, a00m1,k⇥{1}) for some (a0m1,k, a

00
m1,k) 2 I⇡1 ,

with the base curve always ending in the left end-points of the intervals;

3) a labeling from {1, . . . , n} for each side of the disks D1, . . . , Dr and each com-
ponent of the tangle once it has been cut at the intersection with these disks;
the labeling must be consistent in the sense that all the framed arcs coming out
from one side of a disks (or ending at an interval from I⇡0 or I⇡1) have the same
label of that side (or that interval) (cf. Figures 2.2.5 and 2.2.6).

The term “admissible” in the denomination of Kirby tangles refers to the condi-
tion in point 2 of the definition, that no framed curve Ck joins an interval of I⇡0 at
level 0 with one of I⇡1 at level 1 (cf. [48, 36]). However, since we will always work with
admissible tangles, we will simply write Kirby tangle to mean an admissible one.

Moreover, the consistency rule in point 3 of the definition makes the labeling
redundant and sometimes we will omit the superfluous labels. Observe also that in
the case n = 1, all labels in the diagram have value 1, so they will be omitted, and
we are reduced to an ordinary Kirby tangle.

What we have said after Definition 2.2.5 can be restated by saying that to any
special bridged tangle T we can associate a uniquely determined Kirby tangle KT

representing it. This is obtained from T by replacing internal balls and in/out-boxes
as described in Figures 2.2.5 and 2.2.6. Notice that the replacement of internal balls
depends on the extra structure given by the embedding � in point 3 of Definition
2.2.5, hence the construction of KT cannot be immediately applied to a (non-special)
bridged tangle T .

Viceversa, given an n-labeled Kirby tangle K, we can construct a corresponding
special bridged tangle, which we will denote by TK , in the following way: we first
convert the dot notation for 1-handles into the ball notation, by reversing the step
in Figure 2.2.5; after that we take the disjoint union Zn = tn

i=1Ei⇥ [0, 1] of n copies
of E ⇥ [0, 1] and put in the i-th component the portion of the diagram labeled by i;
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eventually, we transform the intervals of I⇡0 at level 0 into in-boxes and those of I⇡1

at level 1 into out-boxes.
We observe that the maps T 7! KT and K 7! TK are not exactly the inverse of

each other. In particular, TKT does not coincide with T , but we will see in Proposition
2.2.8 that they are 2-equivalent.

In order to extend the definition of KT , modulo certain moves, to any bridged
tangle T (see proof Proposition 2.2.8) and to interpret the 2-equivalence of bridged
tangles in terms of Kirby tangles, we consider the moves depicted in Figure 2.2.7.

i i i
i

i

i

j

j

i
j

i
j

crossing change (k ̸= l)

adding/deleting a canceling 1/2 pair

pushing through a 1-handle

2-handle sliding (over a closed framed curve)

i

j

i
j

i

k

l

k

l

Figure 2.2.7. Equivalence moves for n-labeled Kirby tangles

We want to emphasize some facts: 1) crossing change and pushing through a
1-handle are local moves, while 2-handle sliding and adding/deleting a canceling
1/2-pair are global moves; 2) in the 2-handle sliding, we can slide any (possibly
open) framed curve, but the framed curve over which the sliding takes place has to
be a closed one; 3) for ordinary Kirby tangles, that is for n = 1, the crossing change
cannot be realized and the other moves are reduced to the usual case, that is for
i = j = 1.

Definition 2.2.7. Two n-labeled Kirby tangles are said to be 2-equivalent if
they are related by labeled isotopy (preserving the intersections between framed
curves and disks) and the moves of Figure 2.2.7.

Before going on, we introduce two auxiliary 2-equivalence moves on Kirby tan-
gles, which will be needed in the proof of the next proposition. These are the 1-handle
moves in Figure 2.2.8. They can be derived from the 2-equivalence moves in Figure
2.2.7, as shown in Figure 2.2.9.

1-handle twistingsliding under a 1-handle
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Figure 2.2.8. 1-handle moves for n-labeled Kirby tangles
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Figure 2.2.9. Deriving the 1-handle moves

Proposition 2.2.8. Any orientable 4-dimensional relative 2-handlebody W
build on X(Mn

⇡0
,Mn

⇡1
), with ⇡0,⇡1 2 ⇧Gn, can be represented by an n-labeled Kirby

tangle K such that W = WTK . Moreover, given two n-labeled Kirby tangles K1 and
K2, the 4-dimensional relative 2-handlebodies W1 and W2 that they represent are
2-equivalent if and only if K1 and K2 are 2-equivalent in the sense of the previous
definition.

Proof. By Proposition 2.2.4 it su�ces to show that the map K 7! TK from
labeled Kirby tangles to (special) bridged tangles induces a bijection between the
equivalence classes of Kirby tangles under isotopy and the moves in Figures 2.2.7
and the 2-equivalence classes of bridged tangles.

First, we observe that the map K 7! TK induces a well-defined map at the
level of such equivalence classes, that is changing K through isotopy and the moves
in Figures 2.2.7 produces a 2-equivalent bridged tangle. Indeed, any isotopy of K,
as well as any crossing change, clearly induces a suitable isotopy of the maps �
and  determining TK , while the other three moves in Figure 2.2.7 just induces
homonymous moves of bridged tangles (cf. definition starting on page 43).

Now, we want to define the inverse map which associates to the 2-equivalence
class of bridged tangle T the 2-equivalence class of a labeled Kirby tangle KT , based
on the construction T 7! KT considered above for T a special bridged tangle.

Any bridged tangle T = T (�, ) can be made into a special one T 0 by an isotopy
of bridged tangles (that is an isotopy of the maps � and  , as specified in point
(a) on page 43) to achieve properties 1 and 2 in Definition 2.2.5, followed by the
extension of � to a map � as in point 3 of the same definition.

The resulting special bridged tangle T 0 is not unique, since it depends on the
choice of the isotopy and of the extension �. Nevertheless, we are going to show
that the 2-equivalence class of KT 0 is uniquely determined, depending only on the
original bridged tangle T .

Once the isotopy is fixed, di↵erent choices of � lead to labeled Kirby tangles
which can be related by labeled tangle isotopy (preserving the intersections between
framed curves and disks) and the two moves in Figure 2.2.8. In fact, it is clear that
isotopy of � which preserves property 3 of Definition 2.2.5 induces an isotopy of the
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corresponding Kirby tangle. Up to such an isotopy, � is determined by the set of arcs
�(tr

k=1�k) ⇢ E ⇥ ]0.1, 0.9[� pr([r
k=1 Int(B0

k [B00
k)) with �k = {(0, 0)}⇥ [0, 1] ⇢ Ck

and by the framings along them. Of course, di↵erent choices for these arcs are always
isotopic keeping their end-points fixed, but during the isotopy they could cross the
framed curves of T , and each time this happens KT changes by a sliding under a
1-handle. While adding a full twist to the framing along any arc induces on TK a
twisting on the corresponding 1-handle.

Concerning the choice of the isotopy, we have that any other special bridged
tangle T 00 isotopic to T is also isotopic to T 0. Moreover, we can assume the isotopy
relating T 0 and T 00 to be realized by bridged tangles which satisfy properties 1 and
2 of Definition 2.2.5 at every time, except for a finite number of crossing changes
between two framed curves. It follows that the labeled Kirby diagrams KT 0 and KT 00

are related by labeled isotopy and crossing changes as in Figure 2.2.7 (remember
that the conditions in point 3 of Definition 2.2.1 has to be preserved during the
isotopy and this allows us to trivially extend it inside the balls �(Ck) when passing
to Kirby tangles).

Then, we can define KT up to 2-equivalence of Kirby tangles for any (possibly
non-special) bridged tangle T , just by putting KT = KT 0 for some special bridged
tangle T 0 isotopic to T .

At this point, we have to show that if T1 and T2 are 2-equivalent bridged tangles,
then KT1 and KT2 are equivalent through labeled isotopy and the moves in Figures
2.2.7). If T1 and T2 are isotopic bridged tangles, then KT1 and KT2 are equivalent
by the argument above.

Concerning the other operations on bridged tangles, we have only to address
the pushing through 1-handle operations (b) and (c), since 2-handle sliding and
adding/deleting a canceling 1/2-pair are explicitly represented in terms of Kirby
diagrams in Figure 2.2.7. Moreover, if a pushing through a 1-handle move involves
only pieces of framed tangle and no 3-ball, then it can be realized through labeled
isotopy and the top-right move in Figure 2.2.7.

So, we only need to discuss the case when a 3-ball is pushed through a 1-handle
(cf. Figure 2.2.10 for an internal pair of balls). The proof that in this case the
corresponding Kirby tangle changes through adding/deleting canceling 1/2-pairs
and 2-handle slides is presented in Figure 2.2.11.
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Figure 2.2.10. Pushing a 3-ball through a 1-handle
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Figure 2.2.11. Deriving the 1-handle sliding

To conclude the proof, we observe that the two maps K 7! TK and T 7! KT are
inverses to each other on 2-equivalence classes. In other words, KTK is 2-equivalent
to K as a Kirby tangle and TKT is 2-equivalent to T as a bridged tangle. In both
cases, the 2-equivalence is realized by performing the obvious sequence of 2-handle
slidings, pushing through a 1-handle and then deletion of a canceling 1/2-pair, in
order to remove the extra pair of 1- and 2-handles that arises from each pair of in-
and out-boxes as shown in Figure 2.2.6. ⇤

In the next chapters, labeled Kirby tangles will be always represented through
their planar diagrams, so we conclude this section by discussing such representation
in some more details.

A labeled Kirby tangle lives in IntE ⇥ [0, 1] and a planar diagram of it is al-
ways realized by the projection into the square ]0, 1[ ⇥ [0, 1] forgetting the second
coordinate (in such a way that E projects into ]0, 1[ ). As usual, we require that the
restriction of the projection to the tangle, including both framed and dotted curves,
is regular and that it is injective except for a finite number of transversal double
points, which give rise to the crossings.

Definition 2.2.9. A planar diagram of a labeled Kirby tangle K is called
strictly regular, if the disks D1, . . . , Dr spanned by the dotted unknots projects bi-
jectively onto disjoint planar disks and the projection of the framed tangle intersects
each of such disks as presented on the right side of Figure 2.2.5 (up to planar isotopy).
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Figure 2.2.12. The 1-handle moves for representing isotopy by planar diagrams
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Of course, any labeled Kirby tangle admits a strictly regular planar diagram.
The proof of the following proposition is quite a standard exercise left to the reader.

Proposition 2.2.10. Two strictly regular planar diagrams represent isotopic
labeled Kirby tangles (where the isotopy is assumed to preserve the intersections
between framed curves and disks) if and only if they are related by planar isotopy,
labeled framed Reidemeister moves and the moves presented in Figure 2.2.12.

All the planar diagrams we have drawn until now are strictly regular, but using
strictly regular diagrams would make pictures quite heavy for Kirby tangles which
are not so simple. In this case, when this does not cause confusion we will draw
planar diagrams that are not strictly regular. However, we will always keep the
condition that the disks D1, . . . , Dr project bijectively onto disjoint planar disks.

Sometimes it could be convenient to derogate from the labeling consistency rule
for Kirby tangles (cf. point 3 of Definition 2.2.6), by allowing a framed component
with label k to cross a disk spanned by a dotted component with labels i and j,
provided that k /2 {i, j}. Clearly, such a crossing does not mean that the framed
loop goes over the 1-handle represented by the dotted one, since it originates from
the identification of di↵erent 0-handles. Figure 2.2.13 shows the way to eliminate it.

ki
j

k

k

i
j

Figure 2.2.13. Derogating from the labeling consistency rule for k /2 {i, j}

2.3. The categories Kn and the functors "n
k and #n

k

For any n � 1, we define the category Kn of n-labeled Kirby tangles as fol-
lows. The objects of Kn are the sequences of pairs of labeled intervals I⇡ with
⇡ = ((i1, j1), . . . , (im, jm)) 2 ⇧Gn (cf. the notation introduced just before Definition
2.2.6), while the morphisms of Kn with source I⇡0 and target I⇡1 are the n-labeled
Kirby tangles from I⇡0 to I⇡1 , considered up to 2-equivalence of Kirby tangles. The
composition of two morphisms K1 : I⇡0 ! I⇡1 and K2 : I⇡1 ! I⇡2 in Kn is given by
translating K2 on the top of K1, glueing the two tangles along I⇡1 and then rescaling
the third coordinate by the factor 1/2.

On Kn we also define a strict monoidal structure, whose product, once again
denoted by ⇧ , is given by I⇡ ⇧ I⇡0 = I⇡⇧⇡0 on the objects, while on the morphisms
K⇧K 0 is obtained by translating K 0 in the space on the right of K and then applying
a reparametrization of the first coordinate depending on the last one (cf. definition
of the monoidal structure on Tn given on page 45). The unit of the product is the
empty tangle id6O : I6O ! I6O.

For ⇡ = ((i1, j1), . . . , (im, jm)) 2 ⇧Gn, we denote by id⇡ : I⇡ ! I⇡ the identity
morphism of I⇡. It is easy to see that id(i,j) is given by the tangle presented in Figure
2.3.1, and that id⇡ = id(i1,j1) ⇧ . . . ⇧ id(im,jm). Indeed, if K : I⇡0 ! I⇡1 is any Kirby
tangle, in K � id⇡0 the upper framed components of id⇡0 get closed and we can slide
the lower open components over the closed ones and then cancel them with the
dotted components; a symmetric argument works on the top of id⇡1�K.
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j′
i
j

i ji′ j′

i j i′ j′ i i

Lli (i,j)

Figure 2.3.1. Some morphisms in Kn

Finally, we endowKn with a family of braiding isomorphisms �⇡,⇡0 : I⇡⇧⇡0 ! I⇡0⇧⇡.
Namely, �(i,j),(i0,j0) is presented in Figure 2.3.1 and its inverse is ��1

(i,j),(i0,j0) = �(i0,j0),(i,j),
while the braiding isomorphisms on the other objects are obtained inductively by
the relations in Definition 1.5.6 (see Figure 2.3.2 and note that ��1

⇡,⇡0 = �⇡0,⇡).

γπ,π′

π π′

ππ′

γπ,π′

π π′

ππ′

Figure 2.3.2. The braiding isomorphisms in Kn

Proposition 2.3.1. For any n � 1, the category Kn is equivalent as a strict
monoidal category to Chb3+1

n , through the functor induced by the map K 7! WTK .
Moreover, the family of braiding isomorphisms defined above makes Kn into a braid-
ed strict monoidal category.

Proof. The first part of the statement is nothing else than the categorical version
of Proposition 2.2.8. The proof of the second part consists in the straightforward
verification of the naturality of the braiding isomorphisms. ⇤

Before going on, we observe that the Kirby tangles in Figure 2.3.1 represent the
elementary morphisms of a braided Hopf algebra structure on Kn in the sense of
Definition 4.1.1. This will be shown in Section 4.3, where we will relate Kn to the
algebraic category Hr

n. Here, we only need the comultiplication of that structure, in
order to introduce reducible Kirby tangles, as discussed below.

For n > k � 1, we denote by ◆nk : Kk ⇢ Kn the faithful functor induced by the
inclusion Gk ⇢ Gn, which considers any k-labeled Kirby tangle as an n-labeled one.
This functor corresponds to the homonymous functor ◆nk : Chb3+1

k ⇢ Chb3+1
n through

the equivalence of Proposition 2.3.1.
At the end of Section 2.1 we defined the stabilization functor "n

k : Chb3+1
k !

Chb3+1
n and the subcategory Chb3+1,c

n of Chb3+1
n for any n > k � 1, and we claimed

that Chb3+1,c
n is equivalent to Chb3+1

1 through the this functor. Here, we will translate
those definitions in terms of Kirby tangles and prove the statement.
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Definition 2.3.2. Given n > k � 1, let ⇡n99)k = ((n, n� 1), . . . , (k + 1, k)) and
let id⇡n99)k be the identity morphism of I⇡n99)k in Kn. Then, the stabilization functor
"n

k : Kk ! Kn is defined by:

"n
k I⇡ = I⇡n99)k⇧ ◆nk(I⇡) for any I⇡ 2 ObjKk ,

"n
k K = id⇡n99)k⇧ ◆nk(K) for any K 2 MorKk .

From the definition, we immediately see that "n
k = "n

n�1 � . . . � "k+1
k . Figure 2.3.3

shows the stabilization "n
k K of an k-labeled Kirby tangle K 2 Kk from ⇡0 to ⇡1.

π1

π0!!✮

K∈

πn k

!!✮πn k

Kk

Figure 2.3.3. The stabilization "n
k K of K 2 Kk

Clearly, this stabilization functor corresponds, through the category equivalences
given by Proposition 2.3.1, to the stabilization functor "n

k : Chb3+1
k ! Chb3+1

n defined
at the end of Section 2.1.

Now, let �(i,j) : I(i,j) ! I(i,j) ⇧ I(i,j) be the tangle presented in Figure 2.3.1, for
any (i, j) 2 Gn. We extend this definition to �⇡ : I⇡ ! I⇡ ⇧ I⇡ for any ⇡ 2 ⇧Gn (see
Figure 2.3.4) by the recursive formula:

�⇡ = �⇡0⇧⇡00 = (id⇡0 ⇧ �⇡0,⇡00 ⇧ id⇡00) � (�⇡0 ⇧�⇡00) ,

which can be easily seen to give always the same result for �⇡, whatever the decom-
position ⇡ = ⇡0 ⇧ ⇡00 with ⇡0,⇡00 2 ⇧Gn.

π

π π

Figure 2.3.4. The comultiplication morphism �⇡ in Kn

According to observation above, the family�⇡ represents the comultiplication in
Kn in sense of Definition 4.1.1. In particular, next proposition states that � satisfies
the coassociativity property.

Proposition 2.3.3. For any ⇡ 2 ⇧Gn, we have

(�⇡ ⇧ id⇡) ��⇡ = (id⇡ ⇧�⇡) ��⇡ .
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Figure 2.3.5. The coassociativity property for �(i,j)

Proof. The elementary case of ⇡ = (i, j) is shown in Figure 2.3.5, while the
general case follows from this by induction and tangle isotopy. ⇤

Definition 2.3.4. Given n > k � 1 and ⇡0,⇡1 2 ⇧Gn, we say that an n-
labeled Kirby tangle K 2 Kn from I⇡n99)k⇧ I⇡0 to I⇡n99)k⇧ I⇡1 is k-reducible if it has the
form

K = (id⇡n99)k⇧ L) � (�⇡n99)k⇧ id⇡0) ,

for some n-labeled Kirby tangle L 2 Kn from I⇡n99)k⇧ I⇡0 to I⇡1 (see Figure 2.3.6).
The composition of two k-reducible Kirby tangles is still k-reducible (by coasso-

ciativity) and we denote by Kn99)k the subcategory of Kn, whose objects are I⇡n99)k⇧ I⇡
with ⇡ 2 ⇧Gn and whose morphisms are k-reducible n-labeled Kirby tangles. In
particular, we denote by Kc

n the subcategory Kn99)1 of 1-reducible tangles in Kn.

π1

π0

L∈

!!✮πn k

!!✮πn k

Kn

Figure 2.3.6. The generic k-reducible morphism K 2 Kn99)k

We observe that the subcategory Kn99)k of k-reducible Kirby tangles is not closed
with respect to the monoidal product ⇧ : Kn⇥Kn ! Kn. Nevertheless, we can define
a product structure ⇧⇧ : MorKn99)k ⇥MorKn99)k ! MorKn99)k in the following way.

Given two morphisms K = (id⇡n99)k⇧ L) � (�⇡n99)k⇧ id⇡0) : I⇡n99)k ⇧ I⇡0 ! I⇡n99)k ⇧ I⇡1

and K 0 = (id⇡n99)k⇧L0)� (�⇡n99)k⇧ id⇡00) : I⇡n99)k ⇧ I⇡00 ! I⇡n99)k ⇧ I⇡01 in Kn99)k, their product
K ⇧⇧K 0 : I⇡n99)k ⇧ I⇡0⇧⇡00 ! I⇡n99)k ⇧ I⇡1⇧⇡01 is defined by

K ⇧⇧K 0 = K � (id⇡n99)k⇧ �⇡01,⇡0) � (K 0 ⇧ id⇡0) � (id⇡n99)k⇧ ��1
⇡00,⇡0

)

= (id⇡n99)k⇧ L ⇧ L0) � (�⇡n99)k⇧ �⇡n99)k,⇡0⇧ id⇡00) � (�⇡n99)k⇧ id⇡0⇧⇡00) .

These two expressions for K ⇧⇧ K 0 are related by diagram isotopy, as the reader
can easily realize by looking at Figure 2.3.7 that represents the second one. The
associativity of ⇧⇧ is a consequence of the coassociativity property of � and its unit
is given by id⇡n99)k. Observe that ⇧⇧ does not define a monoidal structure on Kn99)k
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since in general the product of compositions (K2 �K1)⇧⇧ (K 0
2 �K 0

1) does not coincide
with the composition of products (K2⇧⇧K 0

2)�(K1⇧⇧K 0
1). Yet, we will find the notation

a useful tool in describing some identities.

π1

L∈

π0 π′
0

π′
1

L′∈

!!✮πn k

!!✮πn k

Kn Kn

Figure 2.3.7. The product K ⇧⇧K 0 of two morphisms in Kn99)k

Proposition 2.3.5. For any n > k � 1, the image "n
k Kk of the stabilization

functor is a subcategory of Kn99)k. Moreover, for any two morphisms K and K 0 in Kk,
we have "n

k(K ⇧K 0) = ("n
k K) ⇧⇧ ("n

k K 0). Hence, the product ⇧⇧ defines a monoidal
structure on the subcategory "n

k Kk.

Proof. Figure 2.3.8 shows that the n-stabilization of an (n � 1)-labeled Kirby
tangle is (n � 1)-reducible, in other words "n

n�1Kn�1 ⇢ Kn99)(n�1), for any n � 2.
This fact easily implies by induction that "n

k Kk is a subcategory of Kn99)k for any
n > k � 1.

n
π1

π0

π1

π0

Kirby tangle

π1

π0

(n−1)-labeled

Kirby tangle

n-labeled

Kirby tangle

(n−1)-labeled

n−1 n n−1 n n−1

n n−1 n n−1 n n−1

Figure 2.3.8. Stabilizations are reducible

The identity "n
k(K ⇧K 0) = ("n

k K)⇧⇧("n
k K 0) for any K and K 0 in Kk, immediately

follows from the definition of the product ⇧⇧ in Kn99)k. ⇤

Our goal is to prove that "n
k : Kk ! Kn99)k is actually an equivalence of monoidal

categories. We will show this by defining a reduction functor #n
k : Kn99)k ! Kk,

which is the inverse of the stabilization functor up to natural equivalence. Actually,
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it is enough to define #n
n�1 and then proceed inductively. The main idea behind the

definition of such functor is that, in the presence of a 1-handle with label (n, n�1), we
can push the part of diagram contained in the n-th 0-handle through such 1-handle,
obtaining in this way a diagram which lives entirely in the first n � 1 0-handles.
Therefore, as first step we will prove Lemma 2.3.6 below, which formalizes the move
of pushing through a 1-handle with generic label (i0, j0). In the present context such
formalization may seem excessive, since the statement of the lemma and its proof
are quite straightforward. Nevertheless, the proof of its algebraic analog (Proposition
4.4.11) will require a significant amount of work and we hope that seeing how things
work out for Kirby tangles will be helpful.

Lemma 2.3.6. Given x = (i0, j0) 2 Gn and ⇡ 2 ⇧Gn, let ⇡x be the sequence
obtained from ⇡ by changing all elements i0 to j0. Then, there exists a monoidal
functor x : Kn ! Kn such that (I⇡)x = I⇡x on the set of objects and the following
properties hold:

(a) if i0 = j0, then Kx = K(i0,i0) = K for every K 2 Kn, that is (i0,i0) = idKn;

(b) if i0 6= j0, then Kx = K(i0,j0) 2 K\i0
n for every K 2 Kn, where K\i0

n is the sub-
category of Kn generated by objects and morphisms which do not contain the
label i0, hence we have a functor (i0,j0) : Kn ! K\i0

n ;

(c) given any other y = (i0, k0) 2 ⇧Gn, there exists a natural equivalence

⇠x,y : id(k0,j0) ⇧ x ! id(k0,j0) ⇧ y .

In particular, we put ⇠x = ⇠x,(i0,i0) and denote by ⇠x
⇡ : Ix ⇧ I⇡x ! Ix ⇧ I⇡ the relative

isomorphism for ⇡ 2 ⇧Gn, in such a way that the following identity holds for any
diagram K 2 Kn from I⇡0 to I⇡1 :

(idx ⇧K) � ⇠x
⇡0

= ⇠x
⇡1
� (idx ⇧Kx) .

Before proving the lemma, we make a few observations. The natural equivalence
⇠x will be given by a 1-handle of label x = (i0, j0) (cf. Figure 2.3.10). Then the
last identity implies that the map K 7! Kx represents how a Kirby tangle changes
when the part of the diagram which lives in the i0-th 0-handle is pushed to the
j0-th 0-handle through such 1-handle. In this perspective, points (a) and (b) of the
statement indicate that if i0 = j0 the tangle can be pushed through without any
change, while if i0 6= j0 the resulting tangle lives in the other 0-handles di↵erent from
the i0-th. More generally, for y = (i0, k0), the natural equivalence ⇠x,y in (c) will be
given by a 1-handle of label (k0, j0). Then (c) implies that Ky can be obtained from
Kx by pushing it through such 1-handle (cf. Figures 2.3.10 and 2.3.12).

Proof of Lemma 2.3.6. Let K 2 Kn be a labeled Kirby tangle from I⇡0 to I⇡1 .
We define Kx for x = (i0, j0) to be the labeled Kirby tangle obtained from any
strictly regular plane diagram of K in the following way (see Figure 2.3.9): we first
pull all the parts of the diagram with label i0 on the top of the ones with label
i 6= i0, by performing a crossing change (as in Figure 2.2.7) at the crossings where a
framed arc labeled i0 passes under one labeled i 6= i0, and flipping over (as in Figure
2.2.12 (a)) the spanning disks of the dotted unknots with the bottom side labeled
i0 and the top one i 6= i0; then we replace all labels i0 by j0.
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Figure 2.3.9. The functorial map K 7! Kx (x = (i0, j0) and i 6= i0)

As the reader might have understood, the only essential modifications before the
label replacement are the crossing changes with i = j0 6= i0, being the other crossing
changes and the disk flippings reversible after that replacement. Nevertheless, in-
cluding also these inessential modifications in the definition of Kx, better interprets
the geometric idea of pulling all the parts labeled by i0 on the top and makes more
transparent the proof of (c) below.

To see that Kx is well-defined, we first check that it does not depend on the
strictly regular diagram of K we started from. Indeed, when changing K by planar
isotopy, labeled framed Reidemeister moves and the moves in Figure 2.2.12, Kx

changes in the same way, except for some extra crossing changes and an obvious
extra sliding under a 1-handle for particular labelings of the moves (b) and (c) in
Figure 2.2.12. Namely, the exceptions occur in (b) (resp. (c)) when k = i0 (resp.
k 6= i0) and exactly one of i and j coincides with i0. Then, we observe that any of the
moves in Figure 2.2.7 applied to K, induces an analogous move on Kx. Therefore,
the 2-equivalence class of Kx depends only on the 2-equivalence class of K.

At this point, the functoriality and the monoidality of the map x : K 7! Kx,
as well as property (b), are immediate. Moreover, if i0 = j0 no label change occurs
and we can undo the crossing changes obtaining Kx = K, which gives (a).

It remains to prove (c). Given x = (i0, j0) and y = (i0, k0) in Gn, we define
⇠x,y
⇡ : I(k0,j0) ⇧ I⇡x ! I(k0,j0) ⇧ I⇡y to be the tangle presented in Figure 2.3.10, where

the largest dotted unknot embraces only the framed strings originally labeled i0 in I⇡.
In the same Figure 2.3.10 it is also presented the inverse tangle (⇠x,y

⇡ )�1. The equiv-

(ξx,y
πξx,y

π )−1

πx

πxπy

πy

k0

j0

k0

k0

j0

j0
k0

j0

k0

j0

j0

k0

j0

k0 j0 k0 j0

k0 j0k0 j0

Figure 2.3.10. The morphisms ⇠x,y
⇡ and (⇠x,y

⇡ )�1 (x = (i0, j0) and y = (i0, k0))
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j0

k0
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j0

k0

j0

k0

j0

k0 j0 k0 j0 k0 j0k0 j0

k0 j0 k0 j0 k0 j0k0 j0

Figure 2.3.11. ⇠x,y
⇡ � (⇠x,y

⇡ )�1 = id(k0,j0)⇧⇡y (x = (i0, j0) and y = (i0, k0))

alence ⇠x,y
⇡ � (⇠x,y

⇡ )�1 = id(k0,j0)⇧⇡y is shown in Figure 2.3.11, where the last step is
not drawn and consists in canceling the two framed unknots with the dotted ones.
The reader can check in a similar way that (⇠x,y

⇡ )�1� ⇠x,y
⇡ = id(k0,j0)⇧⇡x as well.

With the above definition of ⇠x,y
⇡ , the identity

(id(k0,j0) ⇧Ky) � ⇠x,y
⇡0

= ⇠x,y
⇡1
� (id(k0,j0) ⇧Kx)

πy
1

Kx

k0

j0

π0
x

k0

j0

k0

j0

Ky

k0

j0

k0

j0

k0

j0

π0
x

πy
1k0 j0k0 j0

k0 j0k0 j0

Figure 2.3.12. The natural equivalence ⇠x,y (x = (i0, j0) and y = (i0, k0))
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(b)

(a)

k0
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j0

k0
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Figure 2.3.13. Pushing a dotted unknot through another one (i 6= j0)
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corresponding to (c) is obtained by pushing all (and only) the tangle components
labeled by j0 in Kx and originally labeled i0 in K, through the spanning disk of
the dotted unknot of ⇠x,y

⇡x
1
, as indicated by the arrows in Figure 2.3.12. Since those

components lie above the rest of the tangle, the pushing through can be realized
by Reidemeister moves and the moves (d) and (e) of Figure 2.2.12, until a dotted
unknot is encountered, whose spanning disk has one or both sides labeled by j0 while
originally labeled i0 in K. When this happens we proceed as shown in Figure 2.3.13
(a) or (b) respectively, once the disk has been put in the right position by planar
isotopy. In this figure, each step consists in a 1-handle sliding (cf. Figure 2.2.11). ⇤

Looking at Figure 2.3.1, let us discuss how the functor x with x = (i0, j0) acts
on the diagrams drawn there. This will be useful in Section 4.4, when we will relate

x to its algebraic analog (cf. Proposition 4.4.12).
First of all, we observe that all of them but �(i,j) are represented by strictly reg-

ular diagrams, therefore the definition directly applies on those diagrams. According
to the definition of x and the subsequent observation about the essential modifica-
tions occurring in it, we immediately see that x only leads to labeling changes for
id(i,j), "(i,j), ⌘i, li and L(i,j), while it also involves some crossing changes for S(i,j),
S(i,j), �(i,j),(i0,j0) and �(i,j),(i0,j0), in the cases when some of the labels are equal to i0.
We emphasize once again that not all the involved crossing changes are essential.
The only essential ones occur on S(i,j) when i = j0 and j = i0, on S(i,j) when i = i0
and j = j0, on �(i,j),(i0,j0) when j0 2 {i, j} and i0 2 {i0, j0}, and on �(i,j),(i0,j0) when
i0 2 {i, j} and j0 2 {i0, j0} (cf. Figures 2.3.14 and 2.3.15).

x x

j0
i0

j0 i0

j0i0 j0j0

j0 j0

j0

j0
j0 j0

j0 j0j0i0

i0

j0 i0 j0j0

j0

Figure 2.3.14. The tangles (S(j0,i0))x and (S(i0,j0))x with x = (i0, j0)
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j0j0 j0j0

j0 j0j0 j0
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j0j0 j0j0
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i0i0 j0j0 j0j0

j0 j0j0 j0
j0

j0
j0

j0
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i0 j0

j0
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i0

j0

i0

j0

i0

j0
j0 i0

j0
i0

i0j0

Figure 2.3.15. The tangle (�(i,j),(i0,j0))x with x = (i0, j0) for some particular
(i, j), (i0, j0) 2 Gn

Concerning the remaining morphism �(i,j), we have first to put its diagram
in strictly regular form. However, also for this morphism the functor x does not
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imply anything more that a labeling change, except in the case when i 6= i0 and
j = i0, which is illustrated in Figure 2.3.16. Here, (b) and (c) are the required
strictly regular diagrams of the morphism and of its image under x, (d) is just the
same as (c) up diagram isotopy, while a 1-handle twist is needed to get (e). It is
worth noticing that the final result is the same as if we had reversed the 1-handle in
the original diagram, by using the general reversing procedure described in Figure
3.3.8 of the next chapter, and then performed the prescribed crossing changes and
labeling replacement, even without converting the diagram in strictly regular form.
Moreover, we observe that the crossing change between (b) and (c) is essential only
when i = j0 as above, hence for i 6= j0 we still have (�(i,i0))

x = �(i,j0).

i0

i0 i0

1+

j0

(a) (b)

i0

j0

j0 j0

(c) (d) (e)

x

i0 i0

j0 j0

j0 j0

i i

i

i

i0 i0i i i i j0 j0i i j0 j0i i

i i i i

i
i

i i

Figure 2.3.16. The tangle (�(i,j))x for i 6= i0 and j = i0

Now we can proceed with the definition of the reduction functor.

Definition 2.3.7. Given n � 2, we define the elementary reduction functor
#n

n�1 : Kn99)(n�1)! Kn�1 as follows. For any object of I(n,n�1) ⇧ I⇡ of Kn99)(n�1) we put

#n
n�1(I(n,n�1) ⇧ I⇡) = I⇡(n,n�1) ,

while for any morphism K = (id(n,n�1) ⇧ L) � (�(n,n�1) ⇧ id⇡0) of Kn99)(n�1) from
I(n,n�1) ⇧ I⇡0 to I(n,n�1) ⇧ I⇡1 we define (see Figure 2.3.17)

#n
n�1 K = ("(n�1,n�1) ⇧ id

⇡(n,n�1)
1

) �K(n,n�1) � (⌘n�1 ⇧ id
⇡(n,n�1)
0

)

= L(n,n�1) � (⌘n�1 ⇧ id
⇡(n,n�1)
0

) ,

where "(n�1,n�1) and ⌘n�1 are as in Figure 2.3.1 (for i = j = n � 1), K(n,n�1) is
defined in Lemma 2.3.6, and the last equality is obtained by 1/2-handle cancelation.

Given n � k � 1, the reduction functor #n
k : Kn99)k ! Kn is defined as the

composition #n
k = #k+1

k � . . . � #n
n�1 of elementary reduction functors.

π0

↓n

π1

L L(n,n−1)

π(n,n−1)
1 π(n,n−1)

1

L(n,n−1)

π(n,n−1)
0 π(n,n−1)

0

n n−1

n n−1

n−1

n−1

n−1

Figure 2.3.17. The reduction functor #n
n�1
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Lemma 2.3.8. For any n � 2, the reduction #n
n�1 : Kn99)(n�1) ! Kn�1 is a

functor such that #n
n�1 � "n

n�1 = idKn�1 , while "n
n�1 � #n

n�1 ' idKn99)(n�1)
up to the

natural equivalence ⇠(n,n�1) = ⇠(n,n�1),(n,n). Therefore, #n
n�1 and "n

n�1 are category
equivalences between Kn99)(n�1) and Kn�1.

Proof. The functoriality of #n
n�1 directly follows from that of the map K 7!

K(n,n�1) (cf. Lemma 2.3.6). Looking at Figure 2.3.17, we see that #n
n�1 � "n

n�1 =
idKn�1 . In fact, if the leftmost diagram in the figure comes from the stabilization of
an (n � 1)-labeled Kirby tangle as on the left in Figure 2.3.8, then ⇡(n,n�1)

0 = ⇡0,
⇡(n,n�1)

1 = ⇡1 and essentially nothing is changed inside the box by the reduction.
Hence, we end up with the rightmost diagram that represents the (n � 1)-labeled
Kirby tangle itself (with an extra canceling 1/2-pair labeled by n� 1).

n

π0

π1

n

n

n

n

π0

π1

n

n

n

L

π0

π1

n

n

n n

L(n,n−1) L(n,n−1)

n n−1

n−1

n−1

n n−1 n n−1

n n−1 n n−1 n n−1

n−1 n−1

n−1

n−1

n−1

Figure 2.3.18. The natural equivalence ⇠(n,n�1) : "n
n�1 � #n

n�1 ' idKn99)(n�1)

The proof that ⇠(n,n�1) gives a natural equivalence idKn99)(n�1)
! "n

n�1 � #n
n�1 is

provided by Figure 2.3.18. Here, the first diagram is equivalent to the (n � 1)-re-
ducible tangle K = (id(n,n�1) ⇧ L) � (�(n,n�1) ⇧ id⇡0) since ⇠(n,n�1) cancels with its
inverse, the second tangle is obtained from the first by using Lemma 2.3.6 (c) (cf.
Figure 2.3.12 with x = (n, n� 1) and y = (n, n)), while the third tangle is obtained
through 2-handle slidings and isotopy. This completes the proof that #n

n�1 and "n
n�1

are equivalences of monoidal categories. ⇤

Proposition 2.3.9. For any n > k � 1, the reduction #n
k : Kn99)k ! Kk is a

functor such that #n
k �"n

k = idKk
, while there is a natural equivalence ⇠n99)k : "n

k �#n
k '

idKn99)k , inductively defined by ⇠n99)(n�1) = ⇠(n,n�1) and

⇠n99)k = ⇠(n,n�1) � (id(n,n�1)⇧ ⇠(n�1)99)k) .

Therefore, #n
k and "n

k are category equivalences between Kn99)k and Kk.
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Proof. We prove the statement by induction on the di↵erence n � k. For k =
n � 1 it follows from the previous lemma. For k < n � 1, taking into account that
"n

k = "n
n�1 � "n�1

k and "n
k Kk ⇢ Kn99)k, by the induction hypothesis we have

#n
k � "n

k = #n�1
k � #n

n�1 � "n
n�1 � "n�1

k = #n�1
k � "n�1

k = idKk
.

Moreover, for any K 2 Kn99)k we can write "n
k #n

k K = idn,n�1 ⇧ ("n�1
k #n�1

k #n
n�1 K),

which induces a natural equivalence id(n,n�1) ⇧ ⇠(n�1)99)k : "n
k �#n

k ' "n
n�1 �#n

n�1. Then,
by composing with ⇠(n,n�1) : "n

n�1 � #n
n�1 ' idKn99)(n�1)

, we get the natural equivalence
⇠n99)k : "n

k � #n
k ' idKn99)k . ⇤
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3. Labeled ribbon surface tangles

In Chapter 2 we have seen how to represent 4-dimensional relative 2-handlebody
cobordisms between 3-dimensional 1-handlebodies with n 0-handles up to 2-equiva-
lence by means of n-labeled Kirby tangles in E⇥ [0, 1]. These tangles, considered up
to isotopy and 2-deformation moves, was encoded as the morphisms of the categories
Kn with n � 1, equivalent to the categories of cobordisms Chb3+1

n .
The goal of this chapter is to give a di↵erent representation of such cobordisms

in terms of n-labeled ribbon surface tangles, by describing them as n-fold simple
coverings of E⇥[0, 1]⇥[0, 1] (cf. Sections 1.3 and 1.4). Such ribbon surface tangles, up
to labeled 1-isotopy and ribbon moves (cf. Figure 1.4.5), will represent the morphisms
of the categories Sn with n � 2.

The relation between the two representations of 4-dimensional relative 2-han-
dlebody cobordisms, as Kirby tangles and as labeled ribbon surface tangles, will be
established by the functor ⇥n : Sn ! Kn defined in Section 3.3. The restriction ⇥n :
Sc

n ! Kc
n to a suitable subcategory Sc

n ⇢ Sn, representing connected handlebodies,
will be proved to be a category equivalence for n � 4 in Section 3.6.

We emphasize that the same does not hold for n < 4. Indeed, it is shown in
[52] that all connected 4-dimensional 2-handlebodies are 3-fold (irregular) branched
covers of B4, but only the symmetric ones are 2-fold (regular) branched covers of
B4. This implies that ⇥2 cannot be full. Moreover, the result in [7] (cf. also [56])
implies two 3-fold branched covering of B4 representing the same 4-dimensional 2-
handlebody are not necessarily related through 1-isotopy and the ribbon move (R1)
(note that move (R2) does not appear when n  3). Therefore ⇥3, as well as ⇥2,
cannot be faithful.

3.1. The category S of ribbon surface tangles

We define the category S of ribbon surface tangles as follows. An object of
S is any finite (possibly empty) trivial family A of regularly embedded arcs in
IntE ⇥ [0, 1[ , with E = [0, 1]2. Given two objects A0, A1 2 ObjS, a morphism of
S with source A0 and target A1 is a ribbon surface tangle S ⇢ E ⇥ [0, 1] ⇥ [0, 1[ ,
considered up to 1-isotopy, such that @0S = i0(A0) and @1S = i1(A1), where i0, i1 :
E ⇥ [0, 1[ ! E ⇥ [0, 1] ⇥ [0, 1[ are the inclusions defined i0(x, y, t) = (x, y, 0, t) and
i1(x, y, t) = (x, y, 1, t) respectively.

The composition of two morphisms S1 : A0 ! A1 and S2 : A1 ! A2 in S is
represented by the ribbon surface tangle obtained by stacking S2 over S1, so that
@0S2 coincides with @1S1, and then smoothing the union surface and rescaling the
third coordinate by 1/2. Then, the identity morphism idA : A ! A of an object
A 2 S is represented by the product ribbon surface tangle {(x, y, z, t) | (x, y, t) 2
A and z 2 [0, 1]} ⇢ E ⇥ [0, 1]⇥ [0, 1[ .

For any m � 0 we consider the standard object Jm of S to be the (possibly
empty) sequence Jm = (am,1, . . . , am,m) of regularly embedded arcs in IntE ⇥ [0, 1[
defined as follows. For any 1  k  m, we start with the interval in E

am,k = [(k � 0.8)/m, (k � 0.2)/m]⇥ {0.5} ,

then we push its interior in the interior of IntE⇥[0, 1[ to get the regularly embedded
arc am,k (we use the same notation am,k for both the interval and the arc). All the
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arcs forming the Jm’s are assumed to be equivalent up to translations and rescaling
of the first coordinate.

We say that a ribbon surface tangle S has standard ends if it represents a
morphism between standard objects, that is @0S = i0(Jm0) and @1S = i1(Jm1) for
some m0,m1 � 0. In particular, we denote by idm : Jm ! Jm the identity morphism
of Jm for any m � 0.

We can introduce a strict monoidal structure on the full subcategory of S with
standard objects, in the following way. On the set of standard objects, we consider
the product Jm⇧Jm0 = Jm+m0 . Then, given two ribbon surface tangles S and S0 with
standard ends, we define their product S ⇧ S0, by horizontal juxtaposition of S and
S0, followed by a reparametrization of the first coordinate depending only on the
third one (that is a di↵eomorphism (x, y, z, t) 7! (hz(x), y, z, t) with hz increasing
function of x for every z).

Proposition 3.1.1. S is equivalent to its full subcategory whose objects are
the standard objects Jm for m � 0, through the inclusion functor. The product
defined above, makes such subcategory into a strict monoidal category, whose unit
is represented by the empty tangle id0 : J0 ! J0.

Proof. For the first part of the statement, according to Corollary 1.5.4, it su�ces
to prove that any object of A 2 S consisting of m regularly embedded arcs in
IntE ⇥ [0, 1[ is isomorphic to the standard object Jm. In fact, an isomorphism
from Jm to A is represented by the ribbon surface tangle (with no ribbon self-
intersections) S = {(x(p, t), y(p, t), t, z(p, t)) | p 2 Jm , t 2 [0, 1]}, with ht(p) =
(x(p, t), y(p, t), z(p, t)) any ambient isotopy of IntE ⇥ [0, 1[ such that h1(Jm) = A.

Concerning the strict monoidal structure, the verification of the required prop-
erties is straightforward, being the unit of the product the empty morphism, the one
represented by the empty ribbon surface tangle. ⇤

From now on, we will use the notation S for the strict monoidal category of
ribbon surface tangles with standard ends given by Proposition 3.1.1.

The rest of this section will be dedicated to the study of the structure of S. We
will prove that S is equivalent to a strict monoidal braided category generated by a
single object and a set of elementary morphisms and relations in sense of Definition
1.5.10. Moreover, we will show that such category carries also a tortile structure (cf.
Definition 1.5.8).

We start with the elementary diagrams in Figure 3.1.1, considered up to isotopy
preserving horizontal lines, that is isotopy of the form ((x, y) 7! (hy

t (x), ht(y)))t2[0,1]

with hy
t an increasing function of x for every y and t, and ht increasing function of

y for every t. Here, the elementary diagram (a) represents the identity of J1.

(a) (b) (c) (d) (f ) (g)(b′) (c′) (f ′) (g ′)(e) (e′)

Figure 3.1.1. Elementary diagrams in the category S
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Then, also iterated products/compositions of such elementary diagrams, defined
by horizontal/vertical juxtaposition and rescaling, turn out to be well-defined up to
isotopy preserving horizontal lines.

In this context, the planar isotopy moves in Figure 3.1.2, where the boxes D and
D0 in (I1) contain any of the elementary diagrams in Figure 3.1.1, can be interpreted
as relations between iterated products/compositions of elementary diagrams.

D

D′ D

D′

(I1) (I2) (I2 ′)

(I3) (I4)

(I5) (I6)

(I4 ′)(I3 ′)

Figure 3.1.2. Planar isotopy relations in the category S

An analogous interpretation of the moves introduced in Figures 1.3.9, 1.3.10 and
1.3.11 to realize 3-dimensional diagram isotopy of ribbon surface tangles, and of the
1-isotopy moves in Figure 1.3.13, leads to the relations depicted in Figures 3.1.3,
3.1.4 and 3.1.5, where the box D in (I8) and (I9) contains any of the elementary
diagrams in Figure 3.1.1. In particular, relations (I7-7 0) and (I12-12 0) say that (e 0)
and (f 0) are the inverses of (e) and (f ) with respect to the composition.

D

D

D

D
(I7) (I7 ′) (I8) (I9)

(I10)

(I12 I12) ′)(

(I11)

(I13)

(I14) (I15)I14 ′)(

Figure 3.1.3. 3-dimensional isotopy relations in the category S
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(I16) (I17) (I18)

Figure 3.1.4. Graph changing relations in the category S

(I19) (I20)

(I21) (I22)

Figure 3.1.5. 1-isotopy relations in the category S

Now, consider the strict monoidal category C(J1, E,R) generated by the single
object J1 and the set E of elementary morphisms in Figure 3.1.1 modulo the set
R of elementary relations (I1) to (I22). Here, the relations (I1) could be omitted,
since it is universally valid as requested in point (c) of Proposition 1.5.9.

Remember from Section 1.5 that Obj C(J1, E,R) is the free monoid ⇧J1 gener-
ated by J1, which can be identified with the set of standard objects Jm = J1 ⇧ . . .⇧J1

for m � 0. On the other hand, each iterated product/composition of elements of E
can be expressed as a composition of expansions (that is products with identities) of
elements of E, that is a morphism of the free category F (J1, E), which is uniquely
determined up to (I1) (and its expansions). Then, all the relations (I2) to (I22)
can be seen as relations in the free category F (J1, E), hence as defining relations for
C(J1, E,R) according to Definition 1.5.10.

Proposition 3.1.2. S is equivalent to C(J1, E,R) as a strict monoidal catego-
ry, through a monoidal equivalence functor C(J1, E,R) ! S, which is the identity on
the objects and send each morphism of C(J1, E,R), represented by a given diagram,
to the morphism of S represented by the corresponding ribbon surface tangle.

Proof. We consider the map C(J1, E,R) ! S defined by formal propagation
over products and compositions of the requirement that elementary diagrams are
sent to the corresponding ribbon surface tangle. In other words, any planar diagram
given as iterated product/composition of elementary ones is sent to the correspond-
ing ribbon surface tangle as well. Since any morphism in C(J1, E,R) is represented
by a composition of expansions of elements of E, in order to have a well-defined
map on the level of morphisms, it su�ces to observe the images of the relations in
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R are all 1-isotopy moves between the corresponding ribbon surface tangles. Indeed,
the relations in Figure 3.1.2 represent planar diagram isotopies, the ones in Figures
3.1.3 correspond to 3-dimensional diagram isotopies, while those in Figures 3.1.4
and 3.1.5 can be realized by the moves in Figures 1.3.9 and 1.3.13 respectively.

Therefore, the map C(J1, E,R) ! S defined as the identity on the objects and
as described above on the morphisms is a strict monoidal functor. It remains to see
that this functor is full and faithful, hence an equivalence of categories.

The fullness simply means that any morphism of S can be presented as a com-
position of expansions of elementary diagrams. First of all, we observe that such
a morphism is assumed to have standard ends (after Proposition 3.1.1), hence it
can be represented by a special planar diagram thanks to Proposition 1.3.7, since
standard ends are flat.

We say that a special planar diagram of a ribbon surface tangle S is in normal
position with respect to the y-axis if is satisfies the following properties:
(a) each edge of the core graph G projects to a regular smooth arc immersed in

]0, 1[⇥ [0, 1], such that the y-coordinate restricts to a Morse function on it;
(b) vertices, half-twists, crossings and local minimum/maximum points for the y-

coordinate along the edges of the core graph G have all di↵erent y-coordinates
(in particular, there are no horizontal tangencies at vertices, half-twists and
crossings).
We observe that all the elementary diagrams in Figure 3.1.1 are in normal po-

sition with respect to the y-axis, hence this is also true for any composition of
expansions of them.

Figure 3.1.6 shows the di↵erent ways, up to planar isotopy preserving horizontal
lines, to put the spots (a) to (e) and (h) of Figure 1.3.6 in normal position with
respect to the y-axis, by planar diagram isotopies which do not introduce any local
minimum/maximum for the y-coordinate along the edges of the core graph.

Figure 3.1.6. Local models for planar diagrams in normal position

All such local configurations appear among the elementary diagrams in Figure
3.1.1, except for some of those at 3-valent vertices of the core graph. Namely, only
the first of those at a flat 3-valent vertex and the first two of those at a singular
vertex are considered as elementary diagrams. Up to planar isotopy, the others can
be expressed in terms of them as in Figure 3.1.7.

Now, let S be any ribbon surface tangle with standard ends, represented by a
special planar diagram, as said above. Then, we can perturb such diagram to get
normal position with respect to the y-axis. Finally, the local isotopies described
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(I5)

(I16)
(I18)

Figure 3.1.7. Expressing local models in terms of elementary diagrams

in Figure 3.1.7 can be applied to obtain a presentation of S as composition of
expansions of elementary diagrams. This completes the proof of the fullness.

In order to see that the functor is faithful, we have to prove that any two
morphisms of S, expressed as composition of expansions of elementary diagrams,
are equivalent up to plane isotopy preserving horizontal lines and the relations (I1)
to (I22). In other words, that these relations allow us to interpret any 1-isotopy of
ribbon surface tangles with standard ends.

We first focus on planar isotopy, with an argument analogous to that of Proposi-
tion 1.3.8. Assume we are given an arbitrary smooth planar isotopy relating any two
given presentations of S as above. Denote by G the planar graph associated to the
planar diagram of the core graph G of S, whose vertices, other than the projections
of the vertices of G and the 4-valent vertices at the crossings, also include 2-valent
vertices at the half-twists.

We use transversality to perturb the given planar isotopy in such a way there is
only a finite number of critical levels where G presents exactly one of the following:
1) the y-coordinate on one edge is not a Morse function;
2) there is a horizontal tangent line at one of the vertices (including half-twists and

crossings) ;
3) two points among the extremal ones along edges and the vertices (including

half-twists and crossings) have the same y-coordinate.
Away from these critical levels the diagram is in normal position with respect

to the y-axis and the isotopy can be assumed to preserve horizontal lines.
We will show that the relations in Figures 3.1.2 e 3.1.3 su�ce to realize all

changes occurring in the diagram when passing through one critical level.
The cases of critical levels of types 1 and 3 are respectively covered by relations

(I2-2 0) and (I1). At critical levels of type 2 the vertex with horizontal tangency is
switching from one to another of its normal positions depicted in Figure 3.1.6. At
the same time, one extremal point (resp. one pair of canceling extremal points) for
the y-coordinate is appearing/disappearing along the edge (resp. the opposite edges)
presenting the horizontal tangency. The cases when the vertex we are considering is
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a uni-valent flat vertex or a half-twists correspond respectively to relations (I3-3 0) or
(I4-4 0), modulo (I1) and (I2-2 0). If the vertex is a crossing, there are four symmetric
possibilities and Figure 3.1.8 shows how to realize one them. The other three can be
realized in a similar way, by using relations (I7-7 0), (I8) and (I9). In order to deal
with tri-valent vertices, we need to replace the normal positions that are missing in
the elementary diagrams as indicated in Figure 3.1.7. After that, modulo (I1) and
(I2-2 0), all the cases reduce to relation (I6) and to the modification described in
Figure 3.1.9 for singular vertices, and to relation (I5) for flat vertices.

(I9)
(I2 ′) (I7 ′)

Figure 3.1.8. Switching a crossing

7
(I9)
(I6)

(I2 ′)

(I14)
(I12 ′) (I11)

(I10)
(I11)

(I14 ′)

(I8-9)

′)
(I8-9)
(I7-

Figure 3.1.9. Switching a ribbon intersection

Now we pass to 3-dimensional diagram isotopy. By Proposition 1.3.8, we have
to interpret in terms of relations the moves (S3) to (S22) in Figures 1.3.9, 1.3.10
and 1.3.11. Since those moves are defined up to planar isotopy, such interpretation
is quite immediate. In particular, we have that: the relations in Figure 3.1.4 give the
moves in Figure 1.3.9; the relations in the first line of Figure 3.1.3 give the moves in
Figure 1.3.10 and (S15-16); the remaining relations in Figure 3.1.3 give the moves
(S14) and (S17) to (S22) in Figure 1.3.11, modulo the previous moves in the case
of (S19).

Finally, concerning 1-isotopy moves in 1.3.13 (cf. Proposition 1.3.9), it is enough
to observe that, after expressing them in terms of special planar diagrams by using
move (S1), they essentially correspond to the relations in Figure 3.1.5. ⇤

We can use the elementary diagrams in Figure 3.1.1 to define a tortile structure
on the category S (cf. Proposition 3.1.3 below). In particular, we make the following
natural choices: (f ) for the braiding isomorphism �J1,J1 ; (b) and (b0) for the form
and coform morphisms ⇤J1 and �J1 respectively; the composition (�J1 ⇧ idJ1)� (idJ1 ⇧
�J1,J1) � (⇤J1 ⇧ idJ1) for the twist isomorphism ✓J1 (see Figure 3.1.10).

From now on we will write only m instead of Jm in the subscripts of the notation
for the morphisms of S, to keep that notation as simple as possible. For example
�1,1, �1, ⇤1 and ✓1 will denote the morphisms just mentioned above.
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Figure 3.1.10. The twist isomorphism ✓1

Proposition 3.1.3. S is a tortile category, with the tortile structure uniquely
determined by J⇤m = Jm for any m � 0, and by the choices above for �1,1, ⇤1, �1

and ✓1 and by the following recursive formulas for m > 1:

⇤m = (id1 ⇧ ⇤m�1 ⇧ id1) � ⇤1 and �m = �1 � (id1 ⇧ �m�1 ⇧ id1) .

Proof. The general relations for the braiding isomorphisms (cf. Definition 1.5.6)
imply that �0,m = �m,0 = idm for any m � 0 and that the recursive formula �m,m0 =
(idm0�1⇧�m,1)�(�m,m0�1⇧ id1) = (�m�1,m0⇧ id1)�(idm�1⇧�1,m0) holds for any m,m0 � 1.
Analogously, for the twist isomorphisms (cf. Section 1.5) we have ✓0 = id0 and
✓m = �1,m�1� (✓m�1⇧ ✓1) � �m�1,1 for any m � 1. Then, taking also into account the
recursive formulas in the statement, the definitions of �m,m0 , ⇤m, �m and ✓m for any
m,m0 � 0, are uniquely determined by the ones of �1,1, ⇤1, �1 and ✓1.

The verification that the families of morphisms we get in this way from our start-
ing choices give a true tortile structure is straightforward. For m = 1, the defining
properties of forms and coforms reduce to relations (I1) and (I2-2 0), while the self-
duality of the twist ✓m follows from relations (I2), (I4) and (I11) (cf. Figure 3.1.10).
Then, we can proceed by induction on m, using moves (I7-7 0), (I8) and (I9). ⇤

3.2. The categories Sn and the functors "n
k

As we said at the beginning of the chapter, we want to consider n-fold simple
coverings of E ⇥ [0, 1] ⇥ [0, 1], branched over ribbon surface tangles. According to
Section 1.4, these can be described in terms of ribbon surface tangles labeled by
transpositions in the permutation group ⌃n.

Here, we construct the categories Sn of such labeled ribbon surface tangles up to
certain moves preserving the di↵eomorphism type of the covering space for n � 2.
Moreover, we define stabilization functors "n

k : Sk ! Sn relating them for any
n > k � 2.

Let �n ⇢ ⌃n be the set of all transpositions in the permutation group ⌃n and
⇧�n = [1m=0�

m
n be the set of (possibly empty) finite sequences of elements of �n.

For any sequence � = ((i1 j1), . . . , (im jm)) 2 ⇧�n, we denote by J� the sequence of
intervals Jm = (am,1, . . . , am,m) (the standard object of S defined on page 64) with
each am,k labeled by the corresponding transposition (ik jk).

Definition 3.2.1. Let n � 2 and �0 = ((i01 j0
1), . . . , (i

0
m0

j0
m0

)) and �1 =
((i11 j1

1), . . . , (i
1
m1

j1
m1

)) be two sequences in ⇧�n. By an n-labeled ribbon surface
tangle from J�0 to J�1 we mean a ribbon surface tangle S from Jm0 to Jm1 with a
�n-labeling satisfying the following properties:
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1) each region in the diagram of S is labeled by a transposition in �n associated
to the corresponding meridian, in such a way that the Wirtinger relations in
⇡1(E ⇥ [0, 1]⇥ [0, 1]� S) are respected (cf. Section 1.4);

2) the labels on @0S and @1S coincide with those in J�0 and J�1 respectively.

We notice that property 1 is the same as requiring that the labeling represents
the monodromy homomorphism !p : ⇡1(E ⇥ [0, 1] ⇥ [0, 1] � S) ! ⌃n of an n-fold
simple covering of p : W ! E⇥[0, 1]⇥[0, 1] branched over S (cf. Section 1.4). By [52]
we know that W a is relative 4-dimensional 2-handlebody cobordism between the 3-
dimensional 1-handlebodies M0 = p�1(E⇥{0}⇥[0, 1]) and M1 = p�1(E⇥{1}⇥[0, 1]).
Moreover, as discussed in Section 1.4, labeled isotopy and the moves (R1) and (R2)
in Figure 3.2.1 (cf. Figure 1.4.5) do not change W up to di↵eomorphism.

(R1) (R2)(i j) (i k)

(j k)

(i j) (i k)

(j k)

(i j) (i j)

(k l)

(i j) (i j)

(k l)

Figure 3.2.1. Ribbon moves (i, j, k and l all di↵erent)

Actually, in Section 3.3 we will also see that the handlebody structures of M0 and
M1 are uniquely determined, while that of W is determined only up to 2-equivalence,
depending on the choice of an adapted 1-handlebody decomposition of S. We do not
know whether labeled isotopy preserves the 2-equivalence class of W , but we will
show in Proposition 3.3.2 that labeled 1-isotopy does and that the same holds for
moves (R1) and (R2). This is the motivation for the following definition.

Definition 3.2.2. Two n-labeled ribbon surface tangles are said to be equiv-
alent if they are related by the labeled version of the 1-isotopy moves (S1) to (S26)
in Figures 1.3.8, 1.3.9, 1.3.10, 1.3.11 and 1.3.13, and by the two covering moves (R1)
and (R2) in Figure 3.2.1.

Before going on, we recall the auxiliary moves (R3) to (R6) in Figure 3.2.2, which
were introduced in Section 1.4 (cf. Figure 1.4.7). These have been shown to derive
from the equivalence moves (R1) and (R2) up to 1-isotopy (cf. Proposition 1.4.3),
hence they are equivalence moves for labeled ribbon surface tangles as well. Once
we will prove that (R1) and (R2) preserve the 2-equivalence class of the covering
handlebody W , we will know that the same holds for the moves (R3) to (R6).

(R3) (R4)

(R5) (R6)

(i j)

(i j)

(i k)

(i k)

(i j) (i k)

(i k)

(j k)

(j k) (j k)

(i j)

(i j)

(i j)

(k l)

(k l)

(i j) (i j)

(k l)

(k l)

(i j)

(i k)

(j k) (j k)

(j k)

(i k)(i j)

(j k)

Figure 3.2.2. Other moves for labeled ribbon surfaces (i, j, k and l all di↵erent)
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At this point, we can define the category Sn of n-labeled ribbon surface tangles
for any n � 2, in the following way. The objects of Sn are the sequences of labeled
intervals J� with � = ((i1 j1), . . . , (im jm)) 2 ⇧�n (cf. the notation introduced before
Definition 3.2.1), while the morphisms in Sn with source J�0 and target J�1 are the
n-labeled ribbon surface tangles from J�0 to J�1 , considered up equivalence in the
sense of Definition 3.2.2. The composition of morphisms in Sn is just the labeled
version of that in S. Similarly, we define a strict monoidal structure on Sn having
as the product ⇧ the labeled version of that of S. In particular, J� ⇧ J�0 = J�⇧�0 for
every �,�0 2 ⇧�n.

The next Propositions 3.2.3 and 3.2.4 generalize Propositions 3.1.2 and 3.1.3 to
the categories of labeled ribbon surface tangles Sn with n � 2.

Let En be the set of the n-labeled versions of the elementary diagrams in Figure
3.1.1, and Rn be the set consisting of the n-labeled versions of relations (I1) to
(I22) in Figures 3.1.2, 3.1.3, 3.1.4 and 3.1.5 and of the relations (R1) and (R2) in
Figure 3.2.3.

(R1) (R2)

(i j) (j k)

(i k) (i k)

(i j) (j k) (i j)

(i j)

(k l)

(i j)

(i j) (k l)

Figure 3.2.3. Covering relations in Sn (i, j, k and l all di↵erent)

Proposition 3.2.3. For any n � 2, the strict monoidal category Sn is equiv-
alent to the strict monoidal category C({J⌧}⌧2�n, En, Rn) generated by the objects
J⌧ with ⌧ 2 �n and the set of elementary morphisms En modulo the relations Rn,
where En and Rn are the sets defined above. The equivalence is given by a monoidal
functor C({J⌧}⌧2�n, En, Rn) ! Sn, which is the identity on the objects and sends
each morphism of C({J⌧}⌧2�n, En, Rn) ! Sn represented by a given n-labeled di-
agram to the morphism of S represented by the corresponding n-labeled ribbon
surface tangle.

Proof. We observe that the relations (R1) and (R2) in Figure 3.2.3 express
the homonymous covering moves of Figure 3.2.1 in terms of n-labeled elementary
diagrams (and their expansions). Then, the statement follows immediately from
Proposition 3.1.2 and Definition 3.2.2. ⇤

Analogously to what we did for S, we will write � instead of J� in the subscripts
of the notation for the morphisms of Sn. Adopting this convention, Figure 3.2.4
shows some elementary morphisms of Sn.

(i j) (i j)

(i j)

(i j)

(i j)

(i j)

(i j)

(i′j′)

(i′j′)

(i j)

(i j)

(i′j′)

(i′j′)

γ(i j),(i′ j′)γ(i j),(i′ j′)(i j)id λ(i j) ∆(i j)Λ(i j)

(i j)(i j)

(i j)(i j)

Figure 3.2.4. Some elementary morphisms in Sn
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Proposition 3.2.4. For any n � 2, Sn is a tortile category, where for � and
�0 sequences in ⇧�n of length m and m0 respectively: the braiding morphism ��,�0
is the braiding morphism �m,m0 of S labeled according to � and �0 (see Figure 3.2.4
and Figure 3.2.5, and note that ��1

�,�0 = ��0,�); the dual object of J� is J ⇤
� = J�⇤ ,

with �⇤ the sequence obtained by reversing the order of �; the coform, form and
twist morphisms ⇤�, �� and ✓� are the homologous morphisms ⇤m, �m and ✓m of S
labeled according to � (cf. Figure 3.2.4).

Proof. This is an immediate consequence of Proposition 3.1.3, once we take into
account the labeling. ⇤

σ

σ

σ

σσ′σ′

σ′ σ′

γσ,σ′ γσ,σ′

Figure 3.2.5. The braiding isomorphisms in Sn

Now, for any n > k � 2 we define the stabilization functor "n
k : Sk ! Sn, which

is analogous to the functor "n
k : Kk ! Kn introduced in Definition 2.3.2. Similarly

to the case of Kirby tangles, we denote by ◆nk : Sk ! Sn the faithful functor induced
by the inclusion �k ⇢ �n, which considers any k-labeled ribbon surface tangle as an
n-labeled one.

Definition 3.2.5. Given n > k � 1, let �n99)k = ((n n�1), . . . , (k+1 k)) and
let id�n99)k be the identity morphism of J�n99)k in Sn. Then, for any n > k � 2 the
stabilization functor "n

k : Sk ! Sn is defined by:

"n
k J� = J�n99)k⇧ ◆nk(J�) for any J� 2 ObjSk ,

"n
k S = id�n99)k⇧ ◆nk(S) for any S 2 MorSk .

For any transposition (i j) 2 �n, let �(i j) : J(i j) ! J(i j) ⇧ J(i j) be the labeled
ribbon surface tangle presented in Figure 3.2.4. As shown in Figure 3.2.6, this def-
inition extends inductively to �� : J� ! J� ⇧ J� for any sequence � 2 ⇧�n, by
putting

�� = ��0⇧�00 = (id�0 ⇧ ��0,�00 ⇧ id�00) � (��0 ⇧��00) ,

which turns out to not depend on the decomposition � = �0 ⇧ �00 with �0,�00 2 ⇧�n.

σ

σσ

Figure 3.2.6. The comultiplication morphism �� in Sn
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Up to labeled 1-isotopy and move (I18) in Figure 3.1.4, �� satisfies the coasso-
ciativity property, that is:

(�� ⇧ id�) ��� = (id� ⇧��) ��� .

Definition 3.2.6. Given n > k � 1, we say that a labeled ribbon surface
tangle S 2 Sn from J�n99)k⇧ J�0 to J�n99)k⇧ J�1 is k-reducible if it is of the form

S = (id�n99)k⇧ T ) � (��n99)k⇧ id�0) ,

for some T : J�n99)k ⇧ J�0 ! J�1 2 Sn (see Figure 3.2.7). We will refer to the vertical
ribbons forming id�n99)k as the reduction ribbons of S.

The composition of two k-reducible labeled tangles is still k-reducible (by coas-
sociativity) and we denote by Sn99)k the subcategory of Sn, whose objects are
J�n99)k ⇧ J� with � 2 ⇧�n and whose morphisms are k-reducible labeled tangles.
In particular, for any n � 2, we denote by Sc

n the subcategory Sn99)1 of 1-reducible
labeled tangles in Sn.

σ1

σ0

σ

T ∈S

!!✮n k

σ !!✮n k

n

Figure 3.2.7. The generic k-reducible morphism S 2 Sn99)k

Since the subcategory Sn99)k of k-reducible ribbon surface tangles is not closed
with respect to the product ⇧ : Sn⇥Sn ! Sn, we endow it with a product structure
⇧⇧ : MorSn99)k ⇥MorSn99)k ! MorSn99)k , similarly to what we have done for k-reducible
Kirby tangles. Namely, given two morphisms S = (id�n99)k ⇧ T ) � (��n99)k ⇧ id�0) :
J�n99)k⇧J�0 ! J�n99)k⇧J�1 and S0 = (id�n99)k⇧T 0)�(��n99)k⇧ id�00) : J�n99)k⇧J�00 ! J�n99)k⇧J�01 ,

T ∈ T ′∈

σ0 σ′
0

σ1 σ′
1σ !!✮n k

σ !!✮n k

Sn Sn

Figure 3.2.8. The product S ⇧⇧ S0 of two morphisms in Sn99)k
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in Sn99)k, their product S ⇧⇧ S0 : J�n99)k⇧ J�0⇧�00 ! J�n99)k⇧ J�1⇧�01 is defined by:

S ⇧⇧ S0 = S � (id�n99)k⇧ ��01,�0) � (S0 ⇧ id�0) � (id�n99)k⇧ ��1
�00,�0

)

= (id�n99)k⇧ T ⇧ T 0) � (��n99)k⇧ ��n99)k,�0 ⇧ id�00) � (��n99)k⇧ id�0⇧�00) .

These two expressions for S ⇧⇧ S0 are related by diagram isotopy, as the reader can
easily realize by looking at Figure 3.2.8 representing the second one. The associativ-
ity of ⇧⇧ is a consequence of the coassociativity property of � and its unit is given
by id�n99)k . Observe that, as in the case of the category of k-reducible Kirby tangles,
⇧⇧ is a useful tool, but it does not define a monoidal structure on Sn99)k, since the
product of the compositions of two morphisms, does not coincide with the compo-
sition of the corresponding products.

Proposition 3.2.7. For any n > k � 2, the image "n
k Sk of the stabilization

functor is a subcategory of Sn99)k. Moreover, for any two morphisms S and S0 in Sk,
we have "n

k(S ⇧ S0) = ("n
k S) ⇧⇧ ("n

k S0). Hence, the product ⇧⇧ defines a monoidal
structure on the subcategory "n

k Sk.

Proof. Given a ribbon surface tangle S in Sk, the stabilization "n
k S can be put

in the form shown in Figure 3.2.7, by expanding a tongue from each stabilization
ribbon to the box containing S itself. The identity "n

k(S ⇧ S0) = ("n
k S) ⇧⇧ ("n

k S0) for
any S and S0 in Sk, immediately follows from the definition of the product ⇧⇧ in
Sn99)k. ⇤

We are going to prove that Sn99)k is equivalent to "n
k+2 S(k+2)99)k when n � k+3 � 4.

As a consequence, Sc
n is equivalent to "n

3 Sc
3 for n � 4. Actually, the much stronger

statement that "n
4 : Sc

4 ! Sc
n is a category equivalence for n � 5 is also true, as it

will follow from Proposition 2.3.9 once Proposition 3.3.4 and Theorem 3.6.4 will be
established.

Proposition 3.2.8. For any n � k + 3 � 4, the inclusion of "n
k+2 S(k+2)99)k in

Sn99)k is an equivalence of categories.

Proof. We first prove the statement for k = n � 3. More precisely, to any se-
quence � 2 ⇧�n we associate a sequence �0 2 ⇧�n�1 and a natural isomorphism

⇣n,n�3
� : J�n99)(n�3)

⇧ J� ! J�n99)(n�3)
⇧ J�0

such that: any labeled ribbon surface tangle

⇣n,n�3
�1

� (id�n99)(n�3)
⇧ S) � (��n99)(n�3)

⇧ id�0) � (⇣n,n�3
�0

)�1

with S : J�n99)(n�3)
⇧ J�0 ! J�1 in Sn, is equivalent to the product of id(n n�1) and an

(n� 3)-reducible tangle in Sn�1, that is to

id(n n�1) ⇧ ((id�(n�1)99)(n�3)
⇧ T ) � (��(n�1)99)(n�3)

⇧ id�00))

for some T : J�(n�1)99)(n�3)
⇧ J�00 ! J�01 in Sn�1 (see Figure 3.2.9). Then Corollary

1.5.4, allows us to conclude that the inclusion of "n
n�1 S(n�1)99)(n�3) in Sn99)(n�3) is an

equivalence of monoidal categories.
Given � = ((i1 j1), . . . , (im jm)), we let �0 be obtained from � by replacing any

transposition (i n) with (i n�1) if i < n � 1 and with (n�2 n�1) if i = n � 1.
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S ∈ ∈

σ1
′

σ0
′ σ0

′

σ1
′

SSn T

σn!!✮(n−3)

σn!!✮(n−3)

n−1

σ(n−1)!!✮(n−3)

σ(n−1)!!✮(n−3)
(n n−1)

ζn,n−3
σ1

(ζn,n−3
σ0 )−1

Figure 3.2.9. The equivalence between Sn99)(n�3) and "n
n�1 S(n�1)99)(n�3)

Then we define ⇣n,n�3
� = ⇣n,n�3

�,m � . . . � ⇣n,n�3
�,1 , where ⇣n,n�3

�,h is the identity if (ih jh) 6=
(i n) while it is illustrated in Figure 3.2.10 for (ih jh) = (i n). Here, the tongue
starting from the reduction ribbon of id(n n�1) passes through the reduction ribbon
of id(n�1 n�2) if i = n�1 and in front of all the other ribbons in any case, then it forms
a ribbon intersection with the h-th ribbon of id�. The ⇣n,n�3

�,h ’s are isomorphisms, their
inverses being obtained just by vertical reflection. Therefore ⇣n,n�3

� is an isomorphism
as well.

h-th ribbon

σn!!✮(n−3)

σn!!✮(n−3)

σn!!✮(n−3)

σn!!✮(n−3)

(n n−2)(n n−1)

(i n)

(i n−1) (n−2 n−1)

(n−1 n)

Figure 3.2.10. The isomorphism ⇣n,n�3
�,h (i < n� 1)

We observe that ⇣n,n�3
�1

� (id�n99)(n�3)
⇧ S) � (��n99)(n�3)

⇧ id�0) � (⇣n,n�3
�0

)�1 factorizes
as the composition P1 � P2, where P1 = ⇣n,n�3

�1
� (id�n99)(n�3)

⇧ S) � (⇣n,n�3
�n99)(n�3)⇧�0

)�1 and
P2 = ⇣n,n�3

�n99)(n�3)⇧�0
� (��n99)(n�3)

⇧ id�0) � (⇣n,n�3
�0

)�1. Then, it will su�ce to show that
both these factors are equivalent to the product of id(n n�1) and an (n�3)-reducible
tangle in Sn�1.

According to Proposition 1.3.7, we can assume S to be presented by a labeled
special planar diagram. Moreover, Figure 3.2.11 shows how S can be transformed
through equivalence moves in such a way that:

(a) at any crossing between two ribbons respectively labeled by (i n) and (j1 j2)
with j1, j2 < n, the first ribbon passes in front of the second one;

(b) there are no crossings between ribbons labeled by (i n) and (j n) with i 6= j
(actually, we will need this only for i or j equal to n� 1);

(c) there are no ribbon intersections involving the three transpositions (n�2 n�1),
(n�2 n) and (n�1 n) as labels.

In particular, to get property (a) we invert any wrong crossing involving the
labels (i n) and (j1 j2) by applying a move (R4) if j1, j2 6= i, and by 1-isotopy
(inserting two extra ribbon intersections) as shown in Figure 3.2.11 (a) otherwise.
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(i j) (i j)

(R5) (R2)

(a) (b) (c)

(i j) (i j)

(i n)

(i n)

(i n)

(i n)

(i n)

(i n)

(i n)

(i n)

(n−2 n−1)

(n−2 n)

(n−2 n−1)

(n−2 n)

(j n) (j n)

(j n) (j n)

(n−3 n−2)

(n−3 n−2)

(n−1 n)

(n−1 n)

(n−3 n−1)

(n−3 n)

(j n)

Figure 3.2.11.

Then, we proceed as in Figure 3.2.11 (b) to transform all the crossings forbidden by
property (b) into ribbon intersections. Finally, in Figure 3.2.11 (c) we see how to get
rid of the ribbon intersections forbidden by property (c), possibly after performing
move (R1) and/or move (S2) in Figure 1.3.8 to obtain the starting configuration in
the figure.

After all those modifications have been performed, we use move (S2) to put the
diagram of S again into special form, without losing properties (a), (b) and (c).

Then, we express S as a composition Sl � . . . � S1, where each Sk is a product
of a single labeled elementary tangle (cf. Figure 3.1.1) and some identity ribbons
on the left and/or on the right of it. We do that by means of planar isotopy (cf.
proof of Proposition 3.1.2). Up to move (R1), we can also assume that each ribbon
intersection in the Sk’s is like (g) in Figure 3.1.1. Moreover, if the labels involved in
(g) are (i n�1), (i n) and (n�1 n) thanks to (c) we have necessarily that i < n� 2,
and up to plane isotopy and move (I14 0), we can assume that the target is J(n�1 n)

(R2)

(R1) (R5)

σn!!✮(n−3)

σn!!✮(n−3)

σn!!✮(n−3)

σn!!✮(n−3)

σn!!✮(n−3)

σn!!✮(n−3)

σ(n−1)!!✮(n−3)

σ(n−1)!!✮(n−3)

(n n−1)

(n n−1)

(n−1 n)

(i n)

(n−2 n−1)

(i n−1)(i n−1)

(n n−1)

(n n−2)

(n−2 n−1)

(i n−1)(i n−1)

(n−1 n−2)
(i n−2)

(n n−2)

(n−2 n−1)

(i n−1)(i n−1)

(n−2 n−1)

(i n−1)(i n−1)

(i n−2) (i n−2)
(n n−2)

(n−1 n−2)

(n−1 n−2)

Figure 3.2.12. (i < n� 2)
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and the source is J(i n�1) ⇧J(i n) (cf. the first diagram of Figure 3.2.12). Observe that
the resulting plane diagram still satisfies properties (a), (b) and (c).

At this point, in order to prove that P1 is the product of id(n n�1) with an
(n � 3)-reducible tangle in Sn�1, we can limit ourselves to consider the case of
⇣n,n�3
�1

� (id�n99)(n�3)
⇧ S) � (⇣n,n�3

�0
)�1 with S from �0 to �1 given by the product of a

single labeled elementary tangle and some identity ribbons as above.
If such elementary tangle is not of type (g) with ribbons labeled (i n�1), (i n)

and (n�1 n), then a straightforward case by case verification shows that ⇣n,n�3
�1

�
(id�n99)(n�3)

⇧S)�(⇣n,n�3
�0

)�1 is equivalent up to labeled 1-isotopy to id�n99)(n�3)
⇧S0, where

S0 is obtained from S by replacing any transposition (i n) with (i n�1) if i < n� 1
and with (n�2 n�1) if i = n� 1. In fact, starting from h = 1, we can progressively
cancel ⇣n,n�3

�1,h ’s with (⇣n,n�3
�0,h )�1’s on all identity ribbons on the left of the elementary

tangle involved. Then, if the resulting tangle is itself the identity, (f -f 0) or (e-e 0), we
can continue the cancelation until the end. Observe that in the case of the crossings,
we can do that only because of conditions (a) and (b). On the other hand, if we reach
an elementary tangle of the type (b-b0), (c-c 0) or (d), before the cancelation some
moves (I20) and (I21) must be performed. Finally, if we reach a ribbon intersection
with ribbons labeled (i n), (j n) and (i j), where i 6= n � 1 6= j, we achieve the
cancelation of the ribbons involved in the natural transformation, after performing
moves (I22) and (R2).

It remains to consider the case in which the elementary tangle is of type (g)
with ribbons labeled (i n�1), (i n) and (n�1 n). We start as above by canceling
⇣n,n�3
�1,h ’s and (⇣n,n�3

�0,h )�1’s, corresponding to the identity ribbons on the left of the

(R3) (R2)

R ∈

R ∈′

(R2) (R3)

Sn−1 R ∈Sn−1 R ∈Sn−1

R ∈Sn−1 R ∈Sn−1 Sn−1

σ(n−1)!!✮(n−3)

(n n−1)
σ(n−1)!!✮(n−3)

(n n−2)

(n n−2)

(n−2 n−1)

(n
−

1
n
)

σ(n−1)!!✮(n−3)

(n n−1)
σ(n−1)!!✮(n−3)

(n n−2)

(n n−2)

(n−2 n−1)

− −(n 3 n 1)

(n−3 n)

(n
−

1
n
)

−
−

(n
2

n
1)

(n n−2)

− −(n 3 n 1)

σ(n−1)!!✮(n−3)

(n n−1)
σ(n−1)!!✮(n−3)

(n n−2)

(n−2 n−1)(n−3 n)

−
−

(n
2

n
1)

−
−

(n
3

n
1)

(n n−1)
σ(n−1)!!✮(n−3)

σ(n−1)!!✮(n−3) σ(n−1)!!✮(n−3)

(n−3 n) (n−3 n)

(n−2 n−1)

− −(n 3 n 1)

− −(n 3 n 2)

(n−3 n−2)

−
−

(n
2

n
1)

−
−

(n
3

n
1)

(n−2 n−1)

(n n−1)
σ(n−1)!!✮(n−3)

(n−3 n−2)

−
−

(n
2

n
1)

−
−

(n
3

n
1)

(n n−1)
σ(n−1)!!✮(n−3)

σ(n−1)!!✮(n−3)

Figure 3.2.13.
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elementary diagram. Then, we perform the modifications described in Figure 3.2.12
(here the 1-isotopy moves are not indicated). Notice that the final tangle in Figure
3.2.12 is the product of id(n n�1) with an (n � 3)-reducible tangle in Sn�1. After
that, we proceed by induction on the number of identity ribbons on the right of the
elementary diagram. The inductive step consists in forming a new (n� 3)-reducible
tangle in Sn�1 by adding to the previous one a single identity ribbon on the right
together with the corresponding ⇣n,n�3

�1,h and (⇣n,n�3
�0,h )�1. If the label of the identity

ribbon is (i j) with i, j < n we are already done, while a trivial 1-isotopy su�ces if
the label is (i n) with i < n� 1. Figure 3.2.13 shows how to deal the remaining case
of label (n�1 n). This completes the proof that P1 is equivalent to the product of
id(n n�1) and an (n� 3)-reducible tangle in Sn�1.

Now, we show that the same holds for the tangle P2. We proceed by induction
on the di↵erence n � k. The starting case is when n � k = 3, that is k = n � 3.
In this case, modify the horizontal ribbon of ⇣n,n�3

�n99)(n�3)
as described in Figure 3.2.14.

Once again, we get the product of id(n n�1) with an (n� 3)-reducible tangle in Sn�1.
Then, we can conclude by applying the inductive argument in Figure 3.2.13.

(R1)

σn!!✮(n−3)

σn!!✮(n−3)

σn!!✮(n−3)
′

(n n−1) σ(n−1)!!✮(n−3)

σn!!✮(n−3)

σn!!✮(n−3)

σn!!✮(n−3)
′ σn!!✮(n−3)

σn!!✮(n−3)

σn!!✮(n−3)
′ σn!!✮(n−3)

′σ(n−1)!!✮(n−3)

Figure 3.2.14.

For n � k > 3, the inductive step goes as follows. We define inductively the
natural equivalences ⇣n,k

� = (id(n n�1) ⇧ ⇣n�1,k
� ) � ⇣n,n�3

� . Then, by applying the result
for k = n� 3 and the inductive hypothesis, we obtain that for any n-labeled ribbon
surface tangle S in Sn99)k, the composition ⇣n,k

�1
�S � (⇣n,k

�0
)�1 is equivalent to a tangle

in "n
n�1 "n�1

k+2 S(k+2)99)k = "n
k+2 S(k+2)99)k. ⇤

3.3. The functors ⇥n : Sn ! Kn

The goal of this section is to define the family of functors ⇥n : Sn ! Kn for
n � 2, which provide the branched covering representation of relative 4-dimensional
2-handlebody cobordisms.

This will be done by exploiting the ideas introduced by Montesinos in [52], to
give an e↵ective explicit construction of a generalized Kirby tangle KS 2 Kn for
the branched covering space of E ⇥ [0, 1]⇥ [0, 1] determined by an n-labeled ribbon
surface tangle S with n � 2.

Before going into details, let us briefly sketch how such construction derives from
[52]. Assuming n � 2, let S be an n-labeled ribbon surface tangle from J�0 to J�1 ,
with �0 = ((i01 j0

1), . . . , (i
0
m0

j0
m0

)) and �1 = ((i11 j1
1), . . . , (i

1
m1

j1
m1

)) sequences in ⇧�n,
and let p : W ! E⇥ [0, 1]⇥ [0, 1] be the simple n-fold branched covering represented
by S, according to Section 1.4.
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We start with the simple n-fold branched covering of E⇥[0, 1]⇥[0, 1] represented
by the labeled ribbon surface tangle T depicted on the left side of Figure 3.3.1.
The corresponding covering space can be easily seen to be Y (M⇡0 ,M⇡1), where
⇡0 = ((i01, j

0
1), . . . , (i

0
m0

, j0
m0

)) and ⇡1 = ((i11, j
1
1), . . . , (i

1
m1

, j1
m1

)) are determined by
assuming ich > jc

h for any h = 1, . . . ,mc and c = 0, 1. In particular, the 3-cell
E⇥{c}⇥ [0, 1] with the labeled arcs J�c represents M⇡c 5 M⇡c⇥{c} ⇢ Y (M⇡0 ,M⇡1)
as a n-fold simple branched cover. An n-labeled Kirby tangle for Y (M⇡0 ,M⇡1) is
given on the right side of the same Figure 3.3.1.

i11

j1
1

i12

j1
2 j1

1

i1

m

m1

i01

j0
1

i02

j0
2

j0
0m

i0m0

i01 j0
1 i02 j0

2 j0
0

i0 mm0

i11 j1
1 i12 j1

2 j1
1

i1 mm1
i11 j1

1)( j1
1
)i1(i12 j1

2)(

i01 j0
1)( i02 j0

2)(

mm1

j0
0
)i0( mm0

Figure 3.3.1. Y (M⇡0 ,M⇡1) as a branched cover of E ⇥ [0, 1]⇥ [0, 1]

The ribbon surface tangle S can be obtained from T as follows. First add some
regularly embedded disjoint labeled disks D1, . . . , Dr, and then attach to S0 = T [
D1 [ . . . [ Dr some disjoint regularly embedded labeled bands B1, . . . , Bs, which
possibly pass through the disks to form ribbon intersections. In the end, those disks
and bands will give an adapted 1-handlebody decomposition of S, considered as a
labeled embedded 1-handlebody build on J�0 [ J�1 .

According to [52] (cf. also [23]), each disks Dh with label (i j) gives raise to a
1-handle H1

h attached to Y (M⇡0 ,M⇡1) between the sheets i and j of its branched
covering representation, while each band Bh gives raise to a 2-handle attached to
the covering space represented by S0, whose attaching framed knot coincides with
the unique annular component of the counterimage of Bh in such covering space.
The final result is a relative 2-handlebody decomposition of the space W build on
X(M⇡0 ,M⇡1).

Now, we want to make the above sketchy recipe into a formal definition of the
functor ⇥n : Sn ! Kn for n � 2. The non-trivial points here are: 1) the description
of the attaching framed knots of the 2-handles; 2) the proof that the 2-deformation
class of the 2-handlebody structure of W only depends on the equivalence class of
S in the sense of Definition 3.2.2, and in particular it does not depend on the 1-
handlebody decomposition of S used in the construction. As we will see, generalized
Kirby tangles provide a quite natural way to face the first point, while the second
point requires some work.

To define ⇥n on the objects, we consider the map �n ! Gn given by (i j) 7! (i, j)
with i > j and the induced map ⇡ : ⇧�n ! ⇧Gn on the sequences. Then, we put
⇥n(J�) = I⇡(�) for any � 2 ⇧�n.

The definition of ⇥n on the morphisms is much more involved. Let S 2 Sn be
an n-labeled ribbon surface tangle from J�0 to J�1 , with �0 = ((i01 j0

1), . . . , (i
0
m0

j0
m0

))
and �1 = ((i11 j1

1), . . . , (i
1
m1

j1
m1

)) sequences in ⇧�n, considered up to 3-dimensional
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diagram isotopy. Then we define the generalized Kirby tangle ⇥n(S) = KS (well-
defined up to 2-equivalence, cf. Lemma 3.3.1 below) by the following steps.

1) Start with the n-labeled Kirby tangle on the right side of Figure 3.3.1, where
⇡0 = ⇡(�0) = ((i01, j

0
1), . . . , (i

0
m0

, j0
m0

)) and ⇡1 = ⇡(�1) = ((i11, j
1
1), . . . , (i

1
m1

, j1
m1

)).

2) Choose an adapted relative 1-handlebody decomposition S = T [ D1 [ . . . [
Dr [B1[ . . .[Bs build on J�0[J�1 , where: T = ([m0

h=1T
0
h )[ ([m1

h=1T
1
h ) is a collar

of J�0[ J�1 in S, with T c
h 5 J(ich jc

h) ⇥ [0, 1] a collar of J(ich jc
h) for h = 1, . . . ,mc

and c = 0, 1; D1, . . . , Dr are disjoint disks (the 0-handles of the decomposition);
B1, . . . , Bs are disjoint bands attached to S0 = T [D1 [ . . .[Dr (the 1-handles
of the decomposition).

3) Add to the starting Kirby tangle a dotted unknot spanning the disk Dh for each
h = 1, . . . , r; if (i j) 2 �n is the label of Dh in S, then choose one of the two
possible ways to assign the labels i and j to the faces of Dh (cf. Figure 3.3.2).
We call such a choice a polarization of the disk Dh.

i
j(i j)

H1
hDh

Figure 3.3.2. From 0-handles of S to 1-handles of KS

4) Replace the terminal part of each band attached to any disk Dh by a labeled
framed arc consisting of two opposite parallel displacements of it joined together
to form a ribbon intersection with Dh as shown in Figure 3.3.3 (a). Do the same
for the terminal parts of the bands attached to T , as shown in Figure 3.3.3 (b)
and (c). Notice that in all the cases the labeling of the framed arc is uniquely
determined by that of the disk spanned by the dotted component.

Dh H1
h i

j
i
j(i j)

i0h

i1hh

i0hh

j0
h

j1
hh

j1
h

j0
hh

j0
h

i0h

i1h

j1
h

i1h

i1 j1)(

i0 j0)(

(a) (b) (c)

Figure 3.3.3. From 1-handles of S to 2-handles of KS: the ends

5) For each ribbon intersection arc in Dh choose a regularly embedded arc ↵ ⇢ Dh

transversally starting from it and ending in BdDh \ BdS. All these arcs are
chosen to be disjoint from each other and not to meet elsewhere the ribbon
intersections in Dh. Moreover, by a 3-dimensional diagram isotopy we can move
the relative ribbon intersection inside Dh and contract each arc ↵ in a small
neighborhood of its end point in BdDh (cf. Figure 3.3.4).

6) Replace a small portion of the band involved in each ribbon intersection in a
neighborhood of the corresponding arc ↵ by two labeled framed arcs as shown in
Figure 3.3.4 (the four cases depend on how the local labeling of the band is re-
lated to the polarization of Dh). Here, the framed arcs are two opposite parallel
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(i j)

(i k)

(i k)

(j k)

(j k)

(k l)

(k l)

i
j

i
j

i
j

i
j

j
i

j
i

i

j

k

k

j

i

k

k

l

l

k

k

(a) (b)

(c) (d)

Figure 3.3.4. From 1-handles of S to 2-handles of KS: the ribbon intersections

displacements of the band suitably modified in order to allow labeling compat-
ibility (the opposite choice for the kinks in (c) and (d) would be equivalent up
to labeled isotopy) Like in the previous point 4, the labeling of the framed arcs
is uniquely determined by the polarization of the disk, with the only exception
of case (b) where the labels k and l could be interchanged.

7) Finally, replace the remaining part of each band by opposite parallel displace-
ments of it, joining those already inserted in the previous points 4 and 6, inserting
one crossover as shown in Figure 3.3.5 (the two possible choices for the crossover
are equivalent up to labeled isotopy) where needed to match the labeling.

(i j)

i

j

j

i

i

j

j

i

Figure 3.3.5. From 1-handles of S to 2-handles of KS: the crossovers

We remark that at the end of the construction each band is replaced by a framed
knot in the resulting generalized Kirby tangle. By the very definition of generalized
Kirby tangle, one could easily check that such framed knot does really represent the
unique annular component in the counterimage of the band through the branched
covering determined by the labeled ribbon surface tangle S0 = T [D1[ . . .[Dr, no
matter what choices are made at points 3, 5 and 6 (b). Then, it would immediately
follows from [52], that KS represents a relative 2-handlebody structure of W , which
only depends on the 1-handlebody decomposition of S chosen at point 2.

Nevertheless, in the next lemma we prove directly that KS is well-defined up
to 2-equivalence (cf. Definition 2.2.7) for a given n-labeled ribbon surface tangle
S. Actually, in Proposition 3.3.2 we will see that the 2-equivalence class of KS

is also invariant under 1-isotopy and covering moves of S. In other words, the 2-
deformation class of the relative 4-dimensional 2-handlebody represented by KS

does not depend on the choices involved in the above construction of KS (included
the 1-handlebody decomposition of S), in fact it only depends on the equivalence
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class of S (cf. Definition 3.2.2). Then, from the results of next Sections (Propositions
3.4.3, 3.5.4 and 3.6.2), it will follow that such 2-deformation class is the same of the
relative 2-handlebody structure of W deriving from [52].

Lemma 3.3.1. The generalized Kirby tangle KS constructed above from a given
n-labeled ribbon surface tangle S with n � 2 is well-defined up to 2-equivalence.

Proof. First of all, we note that the construction of SK is clearly invariant un-
der labeled 3-dimensional diagram isotopy (preserving ribbon intersections). Then,
the relevant choices occurring in it are in the order: the adapted 1-handlebody de-
composition of S; the polarizations of the Dh’s; the arcs ↵ associated to the ribbon
intersections; the labeling of the framed arcs in Figure 3.3.4 (b). We prove that KS

does not depend on them up to 2-equivalence, by proceeding in the reversed order
and assuming each time that all previous choices are kept fixed.

For the labeling of the framed arcs in Figure 3.3.4 (b), it su�ces to observe that
switching the labels k and l is compensated up to labeled isotopy by the crossovers
inserted in point 7.

Concerning the arcs ↵, up to labeled 3-dimensional diagram isotopy di↵erent
choices can be related by a finite sequence of the elementary moves of Figure 3.3.6,
where we replace a single arc ↵ by ↵0. By the invariance under labeled 3-dimensional
diagram isotopy, we only need to deal with these elementary moves.

α′
α′ α′

α α α

(a) (b) (c)

Figure 3.3.6. The elementary moves for the arcs ↵

Move (a) is the same as inserting two opposite half-twists in the vertical band just
above and below the ribbon intersection (while leaving ↵ unchanged). But this does
not produce any di↵erence on the resulting Kirby tangle, due to the extra crossovers
(possibly canceling preexisting ones) needed to keep the labeling consistency. Figure
3.3.7 shows how the insertion of one half-twist along a band only changes the framing
of the corresponding framed knot by one full twist of the same sign.

i

j

i

j

i

j

i

j(i j)

Figure 3.3.7. Inserting a half-twist along a band

A simple case by case comparison of the portion of Kirby tangles obtained using
↵ and ↵0 for all the possible labelings in moves (b) and (c), confirms that also these
moves change the resulting Kirby tangle by labeled isotopy.

What happens when we invert the polarization of a disk Dh is described in
Figure 3.3.8. We start with a given polarization in (a), where we assume that the
framed arcs passing through Dh, coming either from bands attached to it or from
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ribbon intersection inside it, have been isotoped all together into a canonical posi-
tion. Then, we isotope upside down the dotted unknot to obtain (b) and use labeled
isotopy to make the arcs labeled by i and those labeled by j form separate negative
half twists. These two half twists add up to give a unique negative full twist in (c).
In the end, we get (d) by performing a positive twist on the 1-handle represented
by the dotted unknot (cf. Figures 2.2.8 and 2.2.9). This last diagram, possibly after
canceling some of the crossovers appearing in it with preexisting ones or with kinks
coming from ribbon intersections (as in Figure 3.3.4 (c) and (d)), is exactly what
one gets by choosing the reversed polarization for Dh.

(a) (b) (c) (d)

i
j

j

i

j

i

j

i

−1 −1/2

Figure 3.3.8. Reversing the polarization of a disk

Finally, the independence of KS of the adapted 1-handlebody decomposition of
S will follow from Proposition 1.3.4, once we prove that performing on S labeled
versions of the moves of Figures 1.3.3 and 1.3.4, without vertical disks, corresponds
to modifying KS by certain 2-deformation moves.

In all cases, since H0
i and H0

j can be assumed to be distinct 0-handles (cf. note
after Figure 1.3.4), we can choose the polarizations of them in such a way that
no crossover appears along H1

k . Then, apparently the two moves of Figure 1.3.4
correspond respectively to addition/deletion of a canceling pair of 1/2-handles and
to sliding the 2-handle deriving from H1

l over the one deriving from H1
k . Similarly,

in the case of move of Figure 1.3.3 we have two slidings involving the same 2-
handles, one sliding for each of the two parallel copies of H1

l forming the framed
loop originated from it. We leave to the reader the straightforward verification of
this fact for all the four cases of Figure 3.3.4. ⇤

Proposition 3.3.2. ⇥n : Sn ! Kn, defined by ⇥n(J�) = I⇡(�) and ⇥n(S) =
KS as above, is a braided monoidal functor from the category of n-labeled ribbon
surface tangles to the category of n-labeled Kirby tangles, for any n � 2.

Proof. When thinking of an n-labeled ribbon surface tangle S as a morphism
of Sn, we consider it up to the equivalence relation introduced in Definition 3.2.2.
Hence, we have to prove that the 2-equivalence class of KS in invariant under such
equivalence relation. In the light of Proposition 1.3.9 and Lemma 3.3.1, we only
need to check the 2-equivalence invariance of KS when S is changed by the labeled
versions of the 1-isotopy moves (S23), (S24), (S24) and (S26) of Figure 1.3.13 and
by the covering moves (R1) and (R2) of Figure 3.2.1.

Move (S23) admits a unique labeling up to conjugation in ⌃n. The generalized
Kirby diagrams arising from the labeled ribbon surfaces involved in the resulting
labeled move are depicted in Figure 3.3.9 (we assume that the surfaces are endowed
with the handlebody structures of the corresponding move of Figure 1.3.2). As the
reader can easily realize, the two diagrams are related by labeled isotopy.
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i
j
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j

i

j

i
i

j

j

Figure 3.3.9. Realizing move (S23)

Moves (S24) and (S25) admit three distinct labelings. Namely, if (i j) is the label
of the horizontal component, then the top end of the vertical one can be labeled by
(i j), (j k) or (k l).

The first case is considered in Figure 3.3.10 for (S24) and in Figure 3.3.11 for
(S25). Looking at these figures, we have that the leftmost and rightmost diagrams
correspond respectively to the surfaces on the left and right side of the move with
the simplest adapted handlebody structures. The first step in both figures is given
by 1/2-handle addition, followed by a 2-handle sliding only in Figure 3.3.11. The
next two steps are obtained in turn by a 2-handle sliding and 1/2-handle cancelation.
The same figures also apply to the second case, after replacing by k’s all the i’s in
the upper half and the j’s in the lower half (except for the labels of the dotted line
in the middle). The third case is trivial and we leave it to the reader.
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Figure 3.3.10. Realizing move (S24)

j

i

j

i

i

j

j

i

j

i

i

j

j

i

j

i

i

j

j

i

j

i

i

j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

j
i

j
i

j
i

Figure 3.3.11. Realizing move (S25)

Finally, let us come to move (S26), which requires a bit more work. As above,
let (i j) be the label of the horizontal band. Then, there are eighteen possible ways
to label the move, each one determined by the transpositions � and ⇢ labeling
respectively the left and right bottom ends of the diagonal bands.
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By direct inspection we see that, excluding the trivial cases when at least two
of the three ribbon intersections involve bands with disjoint monodromies, which
are left to the reader, and taking into account the symmetry of the move with
respect to its inverse, there are only seven relevant cases: 1) � = (i j) and ⇢ = (i j);
2) � = (i j) and ⇢ = (i k); 3) � = (i k) and ⇢ = (i j); 4) � = (i k) and ⇢ = (i k);
5) � = (i k) and ⇢ = (i l); 6) � = (i k) and ⇢ = (j l); 7) � = (i k) and ⇢ = (k l).

Figure 3.3.12 regards case 1. Here, the first and last diagrams correspond re-
spectively to the surfaces on the left side and right side of the move with suitable
adapted handlebody structures, while the second one is related to the first by two
2-handle slidings and to the third by labeled isotopy. This figure also applies to case
4, after replacing by k’s all the i’s in the upper half and the j’s in the lower half
(except for the labels of the dotted line in the middle), as above.
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Figure 3.3.12. Realizing move (S26) – I

k

j

k

i

j

i

k

i

k

j

k

i

j

i

k

i

k

j

k

i

j

i

k

i

i
j

i
j

i
j

i
k

i
k

i
k

j

k

j

k

j

k

Figure 3.3.13. Realizing move (S26) – II
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Figure 3.3.14. Realizing move (S26) – III
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Figure 3.3.15. Realizing move (S26) – IV

Similarly, Figure 3.3.13 concerns case 2 and, after the appropriate label replace-
ments, also cases 3 and 5. This time only one 2-handle sliding is needed to relate the
first two diagrams. Figures 3.3.14 and 3.3.15 deal with the remaining cases 5 and
7. The three diagrams of Figure 3.3.14 are related by 1/2-handle addition/deletion,
while the two diagrams of Figure 3.3.15 by labeled isotopy.

It remains to consider the covering moves (R1) and (R2). If S and S0 di↵er by
such a move, then by making the right choices in the construction of ⇥n(S) and
⇥n(S0) we get the same result up to labeled isotopy. This is shown in Figure 3.3.16
for move (R1), while the analogous easier case of move (R2) is left to the reader.

i
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j
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Figure 3.3.16. Realizing move (R1)

This completes the proof that⇥n is well-defined as a functor from Sn toKn, being
the identity morphisms and the composition of morphisms clearly preserved by it.

The fact that ⇥n is actually a braided monoidal functor follows from a straight-
forward verification of the identities ⇥n(�J�,J�0 ) = �I⇡(�),I⇡(�0) for any �,�0 2 ⇧�n

and ⇥n(S ⇧ S0) = ⇥n(S) ⇧⇥n(S0) for any n-labeled ribbon surface tangles. ⇤

It is worth remarking that the Theorem 3.3.2 becomes much simpler if we limit
ourselves to require that the relative 4-dimensional 2-handlebodies represented by
⇥n(S) and ⇥n(S0) are di↵eomorphic, without insisting that they are 2-equivalent.
In fact, labeled isotopy between S and S0 (instead of labeled 1-isotopy) su�ces for
that, since it induces equivalence between the corresponding branched coverings,
as recalled in Section 1.4. The relation between isotopy and 1-isotopy of ribbon
surfaces in B4 on one hand and di↵eomorphism and 2-equivalence of 4-dimensional
2-handlebodies on the other hand, will be discussed in Remark 6.1.7.

Proposition 3.3.3. For any n � 2, ⇥n restricts to a functor ⇥n : Sc
n ! Kc

n,
such that ⇥n(S ⇧⇧ S0) = ⇥n(S) ⇧⇧⇥n(S0) for any two morphisms S and S0 in Sc

n.

Proof. The proposition follows from the monoidality of ⇥n and from the identi-
ties ⇥n(��) = �⇡(�) and ⇥n(��,�0) = �⇡(�),⇡(�0), which hold for any �,�0 2 ⇧�n. ⇤

– 88 –



Proposition 3.3.4. For any n > k � 2 the following diagram commutes.

Sk Kk
Θk

Sn Kn
Θn

↑n
k↑n

k

Proof. This is a direct consequence of the definitions of the functors involved. ⇤

In order to have an explicit form of ⇥n(S) for any S 2 Sn, we need to choose a
specific adapted 1-handlebody structure on S. By Proposition 3.2.3, it is enough to
specify this choice for the elementary morphisms in En, represented by the n-labeled
versions of the planar diagrams in Figure 3.1.1. Actually, we will consider only the
elementary morphisms based on diagrams (a) to (g) in that figure, and use move
(I6) in Figure 3.1.2 to reduce those based on (g 0) to the ones based on (g).

This is done in Figures 3.3.17, 3.3.18 and 3.3.19, where the 0-handles are denoted
with lighter gray and the 1-handles with heavier gray color. Notice that there are two
types of 0-handles: the ones which are neighborhoods of vertices of the core graph,
and the others which divide the ribbons in such a way that none of them contains two
boundary arcs. Moreover, since any 1-handle forms at most one ribbon intersection
with any disk 0-handle, and in this case the 0-handle has a single band attached to
it, the choice of the arcs ↵ is essentially unique up to isotopy, so we omit them.

In the same Figures 3.3.17, 3.3.18 and 3.3.19, we also present the generalized
Kirby tangles ⇥n(S) obtained from the chosen 1-handlebody structures. For later
use the image of the elementary morphism in Figure 3.3.19 has been transformed by
labeled isotopy and by inverting the polarization of the dotted unknot on the right.

Then, given S 2 Sn as an iterated product/composition of elementary diagrams,
we construct⇥n(S) as the formal iterated product/composition of the corresponding
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Figure 3.3.17. Specifying ⇥n – I (i > j and i0 > j0)
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Figure 3.3.18. Specifying ⇥n – II (i > j > k, h > l and {i, j} \ {h, l} = 6O)
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Figure 3.3.19. Specifying ⇥n – III (i > j)

generalized Kirby tangles depicted in those figures. Theorem 3.3.2 assures us that
such composition is well-defined as a morphism in Kn.

3.4. Fullness of ⇥n : Sc
n ! Kc

n for n � 3

As we will see in Proposition 3.4.4, the fullness of ⇥n : Sc
n ! Kc

n for any n � 3
follows from the fullness of #3

1 �⇥3 : Sc
3 ! K1. Hence, we focus on the latter.

Given a Kirby tangle K : Im0 ! Im1 in K1, we will construct a labeled ribbon
surface tangle SK : J�399)1 ⇧ Jm0 ! J�399)1 ⇧ Jm1 in Sc

3 such that #3
1⇥3(SK) = K, with

all intervals in Jm0 and Jm1 labeled by (1 2).

Actually, the notation SK is somewhat abusive, since the ribbon surface tangle
to which it refers is not uniquely determined by the Kirby tangle K, depending on
some choices involved in its construction (at steps 1, 3, 6 and 7). However, in the
next sections (cf. Lemma 3.5.1 and Proposition 3.6.3), the uniqueness will be shown
to hold for "4

3 SK up to equivalence of ribbon surface tangles.

The global structure of SK = Qm1�RK �Qm0 is illustrated in Figure 3.4.1. Here,
Qm0 : J�399)1 ⇧ Jm0 ! J�399)1 ⇧ J2m0 and Qm1 : J�399)1 ⇧ J2m1 ! J�399)1 ⇧ Jm1 are standard
morphisms in S399)1 that only depend on m0 and m1 respectively. On the contrary,
the morphism RK = id�399)1 ⇧�,�,� TK : J�399)1 ⇧ J2m0 ! J�399)1 ⇧ J2m1 of S399)1, which is
obtained by attaching to id�399)1⇧ TK certain families of bands �, �, � between id�399)1
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and TK (the horizontal ones on the left of TK in Figure 3.4.1), depends on the
internal structure of K and on the choice of the bands �, �, �.

D

idσ3!!✮1 ,β δ,γRK

(3 2) (2 1) (1 2)(1 2)(1 2)

(3 2) (2 1) (1 2)(1 2)(1 2)

Jm1

Jm0

D1
1

D1
m1

1
2

D0
1

D0
2

D0
m0

σ3!!✮1

σ3!!✮1

Qm1

Qm0

TKTK =

/δ’sγ’s

β ’s

Figure 3.4.1. The global structure of SK

The main steps in the construction of SK are explained below (namely, step 1 is
a preparatory one on K, step 2 concerns Qm0 and Qm1 , steps 3 to 5 deal with TK ,
steps 6 and 7 regard the families of bands �, �, �, step 8 is devoted to the labeling).

1) Represent K by a strictly regular planar diagram (see Definition 2.2.9) and
break all the open framed components of K, by inserting dotted components

K

Im1

Im0

Figure 3.4.2. Breaking the open framed components of K
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near their ends at Im0 and Im1 , as depicted in Figure 3.4.2. This change is
achieved by a 2-deformation, namely by inserting canceling 1/2-pairs and then
performing 2-handle slidings, so the resulting Kirby tangle can still be denoted
by K. Moreover, denote by D1, . . . , Dr ⇢ E ⇥ [0, 1] the disjoint disks spanned
by the dotted unknots of the original tangle K (meaning excluded the new ones
we have just inserted) and by L = L1 [ . . . [ Ls the framed link formed by the
closed framed components of the modified tangle K (corresponding to all the
framed curves, both open and closed, of the original K).

2) Replace the exterior of the box K in Figure 3.4.2, by the standard ribbon surface
tangles Qm0 and Qm1 shown in Figure 3.4.1, and extend their reduction ribbons
on the left of the box, to compose them into a unique copy of id�399)1 . We observe
that Qm0 and Qm1 are symmetric to each other (except for the fact that m0

and m1 can be di↵erent), but they do no represent inverse morphisms (even if
m0 = m1). For future references, we introduce the following notations: eid(2 1)

for the union of id(2 1) with the bands connecting it to Jm0 and Jm1 in Qm0 and
Qm1 ; eid(3 2) for the union of id(3 2) with the parts of Qm0 and Qm1 connected to it
(the horizontal bands springing from it and the vertical disks where they end);
D0

1, . . . , D
0
m0

and D1
1, . . . , D

1
m1

for the remaining vertical disks in Qm0 and Qm1

respectively (see Figure 3.4.1).

3) Choose a trivial state for the diagram of the unframed link |L| (cf. Section 1.1),
and let L0 = L0

1 [ . . . [ L0
s be the new framed link obtained from L by a regular

vertical homotopy, whose corresponding unframed link |L0| is represented by
that trivial state. Moreover, assume L0 to coincide with L outside F1 [ . . . [ Fl,
where each Fi is a cylinder projecting onto a small circular neighborhood of
a changing crossing. Such a cylinder Fi, together with the relative portion of
diagram, is depicted in Figure 3.4.3 (a) and (b), where j and k may or may
not be distinct. Here Ci ⇢ Fi is a regularly embedded disk without vertical
tangencies, separating the two bands of L \ Fi and forming four transversal
intersection arcs with L0.

Ci CiCi

Ci

Bj

Bj

Bk

Bk

Lj

Lj

Lk

Lk

L′
j

L′
k

(a) (b) (c)

Ci

L′
j

L′
k

Ci

Fi Fi Fi

Figure 3.4.3. The disk Ci and the framed links L and L0 at a changing crossing
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4) For each disk Di, take a parallel copy D0
i on one of the two sides of it (see Figure

3.4.4 (b)). Up to 1-isotopy, it does not matter what side of Di is chosen for D0
i,

since the moves in Figure 1.3.13 allow us to push one disk through the other.
Denote by Gi the cylinder between Di and D0

i and assume that L0\Gi = L\Gi

consists of trivial framed arcs as shown in Figure 3.4.4 (b). Of course, the height
function of the disks Di and D0

i varies according to that of such arcs.

(a) (b) (c)

Lj ’s

Gi

Bj ’s

Di

D′
i

Di

D′
i

Di

Lj ’s

Figure 3.4.4. The parallel disks Di and D0
i for a dotted unknot of K

5) For each framed component Lj, consider a (possibly non-orientable) narrow
closed band Bj, whose core is the base curve |L0

j| of L0
j and whose framing number

is fr(L0
j)/2. In particular, Bj is orientable when fr(L0

j) is even, while it is non-
orientable when fr(L0

j) is odd. In both cases, fr(L0
j) coincides with lk(L0

j, BdBj)
if L0

j and BdBj are coherently oriented. The bands Bj are assumed to form with
the Di’s, the D0

i’s and the Ci’s only ribbon intersections, as shown in Figures
3.4.3 (c) and 3.4.4 (c). Furthermore, all the portions of the Bj’s outside of the
box K in Figure 3.4.2 are assumed to be blackboard parallel and to coincide
with components of Qm0 or Qm1 attached to the box TK in Figure 3.4.1.

6) Connect each band Bj to the boundary component on the right of the reduction
ribbon id(2 1) by a narrow band �j, to get a connected non-singular surface

B = eid(2 1) [ �1 [ . . . [ �s [B1 [ . . . [Bs .

The bands �1, . . . ,�s are assumed to be disjoint from the Fi’s and the Gi’s de-
fined above and from a given family of disjoint spanning disks A1, . . . , As ⇢
E ⇥ [0, 1] � eid(2 1) for the components |L0

1|, . . . , |L0
s| of the trivial link |L0|.

The surface B is assumed to be entirely contained in the box TK , except foreid(2 1) and for the portions of the Bj’s mentioned at the end of the previous step
5 and those of the �j’s coming out from the left side of the box.

7) Connect each disk Ci and each disk D0
i to the boundary component on the right

of the reduction ribbon id(3 2) by a narrow bands �i and �i respectively, to get a
connected non-singular surface

C = eid(3 2) [ �1 [ . . . [ �l [ �1 [ . . . [ �r [ C1 [ . . . [ Cl [D0
1 [ . . . [D0

r .

The bands �1, . . . , �l and �1, . . . , �r are assumed to be disjoint from B [ D1 [
. . . [ Dr and from the interiors of the Fi’s and the Gi’s, except for the ribbon
intersections with the reduction ribbon id(2 1) shown in Figure 3.4.1. The surface
C is assumed to be entirely contained in the box TK , except for eid(3 2) and for
the portions the �i’s and �i’s coming out from the left side of the box.
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8) Finally, define SK to be the labeled ribbon surface tangle given by the union

SK = B [ C [D1 [ . . . [Dr [D0
1 [ . . . [D0

m0
[D1

1 [ . . . [D1
m1

with the unique labeling extending that one we already have at the source and
at the target (cf. Figure 3.4.1). In particular, the labeling around the disks
Ci and Di results as in Figure 3.4.5. Then, letting TK : J2m0 ! J2m1 be the
union of the part of B1 [ . . . [ Bs inside the box in Figure 3.4.1 with the disks
C1, . . . , Cl, D1, . . . , Dr and D0

1, . . . , D
0
r, we have SK = Qm1 � RK � Qm0 with

RK = id�399)1⇧�,�,� TK .

Bj

Ci
γi

Bk

(1 3)

(1 2) (1 2) (1 2)

(1 2)

(1 2)

(1 2)(1 2)

Di

D′
i

δi

(1 3)

(2 3)(2 3)

Bj ’s

(1 3)

Figure 3.4.5. The labeling around the disks Ci and Di

Remark 3.4.1. We recall that, up to 2-deformation, any crossing in a Kirby
diagram can be inverted by adding a suitable pair of 1/2-handles, as in Figure 3.4.6.
Actually, up to handle trading this is the trick used in [54] to symmetrize framed
links in order to represent closed 3-manifolds as branched covers of S3.

Figure 3.4.6. Inverting a crossing up to 2-deformation

Figure 3.4.7 shows, how to interpret in this way the disks Ci we insert at the
changing crossings in step 3 of our construction of SK . Apart from the indicated
moves only diagram isotopy is needed for that.

(1 3)

(1 3)

(1 3)

(1 3)

(1 3)

(1 2)(1 2)

(1 2)(1 2)

(1 2)(1 2)

(1 2)(1 2)

(1 2)(1 2)

(1 2)(1 2)

(1 2)(1 2)

(1 2)(1 2)

(1 2)(1 2)

(1 2)(1 2)

(1 3) (1 3)

(1 2)

(1 2)

(1 2)

(R6)

(R5) (R6)

(1 3)

(1 2)

(1 3)

Figure 3.4.7. Interpreting the disks Ci in terms as a pair of 1/2-handles
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Remark 3.4.2. The definition of SK does not preserve the corresponding prod-
ucts. The most we can say about it is that, if K : Im0 ! Im1 and K 0 : Im0

0
! Im0

1

are two Kirby tangles in K1, then TK⇧K0 = TK ⇧ TK0 , hence RK⇧K0 = RK ⇧⇧RK0 and
SK⇧K0 = Qm1+m0

1
� (RK ⇧⇧RK0) �Qm0+m0

0
(cf. Figure 3.4.1).

An example of the construction of SK is presented in Figure 3.4.8. Here, all the
framed components in the Kirby tangle K on the left side are blackboard parallel,
except for one half-twist needed to satisfy the last requirement in point 2 of Definition
2.2.6. We assume such half-twist to be positive for the two components ending at
the top and negative for the component ending at the bottom, in such a way that
they cancel with the extra half-twists that appear when closing those components
in step 1 of the construction of SK . Notice the half-twist introduced along the trefoil
band in SK according to step 5 of the construction.

(3 2) (2 1) (1 2)

(1 2)

(1 2)

(3 2) (2 1)

SK K

Figure 3.4.8. An example of labeled ribbon surface tangle SK

Proposition 3.4.3. #3
1⇥3(SK) = K for any Kirby tangle K 2 K1.

Proof. Recall that the construction of ⇥3(SK) involves some choices. In par-
ticular, we need to choose an adapted 1-handlebody decomposition of SK and a
polarization for the 0-handles of such decomposition.

To this aim, we first decompose the reduction ribbons id(3 2) and id(2 1) as a
single long 0-handle and two short 1-handles connecting it with the collars of the
source and the target. We denote the two 0-handles by R0

(3 2) and R0
(2 1) and let

them contain the attaching arcs of all the horizontal bands attached to the ribbons,
including those in Qm0 and Qm1 , as well as all the ribbon intersections between such
bands and id(2 1).

We also decompose each of the closed bands B1, . . . , Bs defined in step 5 of the
construction of SK , by putting Bi = B0

i [ B1
i , with B0

i a small 0-handle containing
the attaching arc of �i and B1

i a 1-handle attached to B0
i .

Then, we consider the adapted 1-handlebody structure of SK , whose 0-handles
are R0

(3 2), R0
(2 1) [ �1 [ . . .[ �s [B0

1 [ . . .[B0
s , all the vertical disks in Qm0 and Qm1

and the disks D1, . . . , Dr, D0
1, . . . , D

0
r, C1, . . . , Cl discussed in steps 3 and 4 of the

construction of SK . Consequently, the 1-handles are those in id(3 2) and id(2 1), the
bands �1, . . . , �l, �1, . . . , �r and all the horizontal bands in Qm0 and Qm1 .

Concerning the polarizations, we put the greater label on the top face for all the
0-handles, except in the case of the disks D0

1, . . . , D
0
m0

and D1
1, . . . , D

1
m1

in Qm0 and
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Qm1 , for which we put the label 3 on the bottom face, and the disks Di and D0
i, for

which we put the label 3 on the face internal to the cylinder Gi.
The first diagram in Figure 3.4.9 shows the generalized Kirby diagram ⇥3(SK)

based on the handlebody structure described above, in the case when K and SK

are the Kirby tangle and the ribbon surface tangle presented in Figure 3.4.8. In this
figure, as well as in the next ones of this proof, we omit to draw the framings for
the sake of readability.

↓3
1

Θ3(SK)
2 1

2 12 12 1

2 1

3 2

3 2 2 1

2 12 12 1

2 1

3 2

3 2

2 1

2 12 12 1

2 1

3 2

3 2 2 1

2 12 12 1

2 1

3 2

3 2

1 1 1 1

1 1

↓3
1(Θ3(SK)) K

1 11 1

1 1

2 1

2 12 12 1

2 1

3 2

3 2

Figure 3.4.9. Reducing ⇥3(SK) to K: overview

It remains to prove that ⇥3(SK) can be reduced to K via #3
1. The details of this

reduction process are given below. The whole process is outlined in Figure 3.4.9 for
the specific example considered there.

As the first step, we slide the open framed components over the corresponding
closed ones linked to the same dotted unknot on the top and on the bottom of the
diagram and then eliminate such dotted unknots by 0/1-handle cancelation. In the
same step, we also perform at each band �j the isotopy modification described in
Figure 3.4.10 (cf. second diagram in Figure 3.4.9).

As the second step, we perform a 1-handle sliding of the dotted unknots spanning
the disks D0

i over the corresponding ones spanning the disks Di, as it is shown in
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(1 2)

(1 2)

(1 2)

2

2

1

1
2 1

R0
(2 1) B0

j

B1
j

B1
j

βj

2

2

1

1
2 1

Θ3

Figure 3.4.10. Reducing ⇥3(SK) to K: the bands �j

Figure 3.4.11, and then we eliminate them by 0/1-handle cancelation. We eliminate
in the same way one dotted unknot from each pair deriving from a pair of parallel
vertical disks in Qm0 and Qm1 .

Θ3
3

1
1

2 2 2

3

3 3
1

1 1 1

2 2 21 1 1

2 2 2

1
1

1 1 1

2 2 21 1 1

3

1

(1 2) (1 2)

Di

D′
i

δi

(1 3)

(1 3)

(2 3)

Bj ’s

(1 2)

Figure 3.4.11. Reducing ⇥3(SK) to K: the disks Di

Moreover, at each band crossing we modify the Kirby diagram by the crossing
changes depicted in Figure 3.4.12 and then we use 0/1-handle cancelation once again
to eliminate the dotted unknots spanning the disks Ci.

Bj

Bk

2
1

2
1

1

1
2

2
2

1

2
1

1

1
2

2

Θ3

2
1

3

1

2
1

1

1
2

23

2
1

3

1

2
1

1

1
2

2
2

1

3

1

2
1

1

1
2

2

Θ3

Bj

Ci
γi

Bk

(1 3)

(1 2)(1 2)

(1 2)(1 2) (2 3)

(1 2)(1 2)

(1 2)(1 2)

Figure 3.4.12. Reducing ⇥3(SK) to K: the crossings

At this point, we are left with a generalized Kirby diagram whose framed link L
is a componentwise band connected sum of the original framed link L, labeled by 1,
and a parallel copy L00 of L0, labeled by 2, with a certain number of extra half-twists
added to the framing. Namely, each component Lj of L is the band connected sum of
Lj and the parallel copy L00

j of the corresponding component L0
j, through connecting

bands running back and forth on the two sides of �j, with �2 fr(L0
j) extra half-twists

added to the framing (cf. step 5 in the construction of SK and Figure 3.3.7). Looking
at the rightmost diagrams in Figures 3.4.11 and 3.4.12, we see that the part of L
labeled by 2 has been pulled up over everything else, including the dotted unknots
(cf. third diagram in Figure 3.4.9).
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Since the unframed link |L0| is trivial and the bands �i are disjoint from a set
of trivializing disks for it, we can isotope |L| to get back |L| entirely labeled by 1,
without moving the rest of the diagram (cf. fourth diagram in Figure 3.4.9).

We want to show that the last isotopy actually takes the framed link L to L,
or equivalently that the equality fr(Lj) = fr(Lj) holds for every j = 1, . . . , s. In
fact fr(Lj) = fr(Lj)+ fr(L00

j )� fr(L0
j), with the last term resulting from the �2 fr(L0

j)
extra half-twists. Then, it su�ces to observe that fr(L00

j ) = fr(L0
j), being L00

j a parallel
copy of L0

j.
As it is illustrated by the fifth diagram in Figure 3.4.9, the resulting Kirby tangle

is 2-equivalent to "3
2 (⇠(2,1) � "2

1K � (⇠(2,1))�1), where ⇠(2,1) is the natural equivalence
defined in Section 2.3 (see Lemma 2.3.8). Thus, we have #3

1⇥3(SK) = #3
1 "3

2 (⇠(2,1) �
"2

1K � (⇠(2,1))�1) = #3
1 "3

2 "2
1 #2

1 "2
1K = K, by Proposition 2.3.9 (cf. last two diagrams

in Figure 3.4.9). ⇤

Proposition 3.4.4. The functor ⇥n : Sc
n ! Kc

n is full for any n � 3.

Proof. First of all, we observe that SK 2 Sc
3. Indeed, it can be put in the form

of Figure 3.2.7 with n = 3 and k = 1, through a quite obvious labeled isotopy. Then,
the fullness of ⇥3 : Sc

3 ! Kc
3 follows from Proposition 3.4.3 and the fact that the

reduction functor #3
1 : Kc

3 ! K1 is a category equivalence (Proposition 2.3.9).
For n > 3, we have that ⇥n("n

3 SK) = "n
3 ⇥3(SK) by Proposition 3.3.4. Hence,

taking into account that "n
3 is a category equivalence (Proposition 2.3.9), we can

derive the fullness of ⇥n : Sc
n ! Kc

n from the one of ⇥3 : Sc
3 ! Kc

3. ⇤

3.5. The functor ⌅n : K1 ! Sc
n for n � 4

As discussed at the beginning of the previous section, the ribbon surface tangle
SK does not depend only on the given Kirby diagram K, but also on the various
choices involved in its definition. In particular, in step 3 of the construction of SK

we made the choice of a trivial state |L0| of for the diagram of the link |L| contained
in a strictly regular diagram of K.

Let ŠK denote any ribbon surface tangle resulting from that construction, under
the extra assumption that the trivial state |L0| is vertically trivial.

In this section, we will show that "4
3 ŠK is well-defined up to labeled 1-isotopy

and moves (R1) and (R2), in other words it does not depend on the choices involved
in the construction of ŠK , and that it is invariant under 2-deformations of K.

This will give us a functor ⌅4 : K1 ! Sc
4 defined by ⌅4(K) = "4

3 ŠK , from the
category K1 of ordinary Kirby tangles to the category Sc

4 = S499)1 of 1-reducible 4-
labeled ribbon surface tangles. Then, by composing with "n

4 , we will get an analogous
functor ⌅n : K1 ! Sc

n also for n > 4.
Eventually, in the next section we will see that the functor ⌅4 is full (Proposition

3.6.2), which together with Proposition 3.4.3 implies that ⌅4(K) = SK , where SK

is constructed using an arbitrary trivial state (Proposition 3.6.3).

Lemma 3.5.1. Let K be a given Kirby tangle in K1. Up to labeled 1-isotopy
and moves (R1) and (R2), the labeled ribbon surface tangle "4

3 ŠK does not depend
on the choices of the strictly regular planar diagram of K, of the vertically trivial
state of the link |L| and of the bands �1, . . . ,�s, �1, . . . , �l and �1, . . . , �r involved in
the construction of ŠK (cf. steps 1, 3, 6 and 7).
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Proof. First of all, we observe that the spanning disks A1, . . . , As in step 6 of
the construction of ŠK can be always assumed to satisfy the following conditions
(possibly after a small perturbation of them):

(a) Ai \ Bi consists of |L0
i| and a certain number of disjoint clasps connecting |L0

i|
with the boundary of Ai, in such a way that Ai [ Bi collapses to Ai, for every
i = 1, . . . , s; while Ai \Bj = 6O for every i 6= j;

(b) A1 [ . . . [ As forms with each Ci four clasps and some (possibly none) ribbon
intersections, as shown in Figure 3.5.1 (left side);

(c) A1 [ . . . [ As forms with each Di [D0
i two clasps for each intersection point in

|L| \Di = |L0| \Di and some (possibly none) ribbon intersections, as shown in
Figure 3.5.1 (right side);

(d) the �i’s and the �i’s may pass through A1 [ . . . [ As forming only ribbon inter-
sections with them.

Di

Gi

Fi

Ci

Aj ’s

D′
i

|L′
j |’s

clasps

ribbon
intersections

Figure 3.5.1. Intersections between A1 [ . . . [As and the disks Ci, Di and D0
i

At this point we pass to the core of the proof. We prove that ŠK is indepen-
dent (up to labeled 1-isotopy and moves (R1) and (R2)) on the choices listed in
the statement, by proceeding in the reverse order and assuming each time that all
previous choices have been fixed. By Proposition 1.4.3, in addition to moves (R1)
and (R2), we can use also the moves (R3) to (R6) in Figure 3.2.2.

Concerning the �i’s and the �i’s, it su�ces to prove that labeled 1-isotopy and
the moves above enable us to change them one by one.

We start by showing how to replace a band �i by a di↵erent band �0i. Observe
that, up to a 3-dimensional isotopy, we can assume �i and �0i to be disjoint. Then,
Figure 3.5.2 illustrates the sequence of moves realizing the replacement. First we
modify the diagram in (a) to get the labeled ribbon surface tangle in (c), where
both �i and �0i are attached to Ci, but �0i passes through two small disks D and D0

labeled (3 4), with D0 attached by a narrow band � to id(4 3). The tangle in (c) is
obviously equivalent to ŠK , since we can use move (R3) to cut �0i (see diagram (b)),
retract the resulting tongue to id(3 2) and then retract the tongue D0 [ � to id(4 3).
Now, since the label (1 2) of the bands Bj and Bk is disjoint from (3 4), we can
move the disks D and D0 in turn, to let Ci pass through them by 1-isotopy and four
moves (R2), obtaining in this way (d) and then (e). Finally, the same procedure
described above to see the equivalence between (a) and (c), but with the roles of �i

and �0i interchanged, gives the equivalence between (e) and (f ).
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Figure 3.5.2. Independence of ŠK on the bands �i

A similar argument works to change a band �i into a di↵erent band �0i. The
process begins and ends like above, with �i and �0i in place of �i and �0i, while the
central part is illustrated by Figure 3.5.3. In this case, two (R2) moves for each arc
passing through Di are needed in order to move the disks D and D0 from �0i to �i.
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(1 3)

(3 4)

Di

D′
i

Di

D′
i

(1 3)

(1 3)

(3 4)

(1 3)
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Bj ’s

(1 2)

Bj ’s

(1 2)

Bj ’s

(R2) (R2)

Figure 3.5.3. Independence of ŠK on the bands �i

The proof of the independence of ŠK on the �i’s is more involved, but still based
on the same idea. We want to replace certain bands �1, . . . ,�s with di↵erent bands
�01, . . . ,�

0
s. According to step 6 in the construction of Šk, there exist two families of

disjoint spanning disks A1, . . . , As and A0
1, . . . , A

0
s for the link |L0| which are disjoint

from the �i’s and from the �0i’s respectively.
We first consider the special case when Ai = A0

i for every i = 1, . . . , s. In this
case (but not in general, as we will see) we can replace the bands one by one.

The idea of how a given band �i can be replaced with a di↵erent band �0i, is
presented in Figure 3.5.4, even if that figure is much more sketchy than Figure 3.5.2.
In fact, instead of the disk Ci we have here the complex Ai [ Bi that can be large
and complicated, although still collapsible, as it follows from assumption (a) at the
beginning of the proof. The first step, to get the labeled ribbon surface tangle in
Figure 3.5.4 (a) from ŠK , and in particular the disks D and D0, and the last step,
to get the final result from the labeled ribbon surface tangle in (e), are once again
similar to the above ones. But this time the bands �i and �0i in place of �i and �0i
originate from id(2 1) and are labeled (1 2), while the band � connects the disk D0 to
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id(4 3) passing through id(3 2) to form a ribbon intersection. We obtain in this way
the label (2 4) for the disks D and D0, which is disjoint from the label (1 3) of the
disks Dj, D0

j and the bands �j and �j. This permits to get (e) from (a) by moving D
and D0 in turn by 1-isotopy and some moves (R2) and (R4), within a neighborhood
of Ai and letting Ai pass through them. In particular, the moves (R2) are needed
when the disks cross the clasps that Ai forms with the Dj’s, the D0

j’s and the Ck’s
(cf. assumptions (b) and (c) at the beginning of the proof). These clasps always
appear in pairs, each pair being formed with one of the Cj’s or with a Dk and the
corresponding D0

k or (cf. Figure 3.4.5). Each pair looks like the only one depicted
on the right part of the diagrams in Figure 3.5.4. Comparing (b) and (c), we see
that the disk D can be pushed beyond such pair by two (R2) moves. On the other
hand, the moves (R4) are used in the obvious way to push D beyond each ribbon
intersection that the interior of Ai forms with the �j’s and the �k’s (cf. assumption
(d) at the beginning of the proof). Finally, once the disk D has been completely
moved from �i to �0i (diagram (d) in the figure), we move in the same way the disk
D0 to get (e) and we are done.
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Figure 3.5.4. Independence of ŠK on the bands �i

Remark. The above argument without any modification except for some extra
1-isotopy moves, proves that, in the special case when A1, . . . , As = A0

1, . . . , A
0
s, �i

can be replaced by �0i even if the bands �1, . . . ,�s and �01, . . . ,�
0
s form ribbon inter-

sections with the disks Aj with j 6= i. The labeled ribbon surface tangles involved
are not ŠK ’s any more, but we need to extend our argument to such kind of tangles,
since they will appear in the following as intermediate stages between genuine ŠK ’s.

In order to deal with the case when Ai 6= A0
i for some i, we need a preliminary

adjustment. Up to a small isotopy inside a tubular neighborhood of |L0|, we separate
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the intersection Int(A1 [ . . . [As) \ Int(A0
1 [ . . . [A0

s) from |L0|. After that, we put
Int(A1 [ . . . [ As) and Int(A0

1 [ . . . [ A0
s) in general position, so that they meet

transversally along a finite family of closed curves. Then, we proceed by induction
on the number of components of Int(A1 [ . . . [As) \ Int(A0

1 [ . . . [A0
s).

The induction starts from the case when such intersection is empty. In this case,
we have pairwise disjoint spheres Si = Ai [ A0

i with i = 1, . . . , s. Then, there exist
new bands �00i between Bi and id(2 1), such that: 1) �00i \ Sj = 6O if either i = j or
i 6= j and Si lies in the exterior E(Sj) of Sj; 2) �00i \ Sj consists of a single ribbon
intersection if i 6= j and Si lies in the interior I(Sj) of Sj. We choose an indexing
such that case 2 possibly happens only for i > j. The �00i ’s are not legitimate bands
for a genuine ŠK , but according to the remark above about the proof of the special
case, we can still apply that argument to change the �i’s into the �00i ’s one by one,
by using the Ai’s, provided we proceed in the order given by the chosen indexing.
After that, we can change the �00i ’s into the �0i in the same way, but using the A0

i’s
in place of the Ai’s and proceeding in the reversed order.

We are left with the inductive step. Choose a closed curve C among the compo-
nents of Int(A1 [ . . .[As)\ Int(A0

1 [ . . .[A0
s), which is contained in IntAi \ IntA0

j

and is an innermost one in IntA0
j for i, j  s. We apply the usual cut and paste

technique to Ai to remove C from the intersection. Namely, if D ⇢ Ai and D0 ⇢ A0
j

are the subdisks spanned by C, then we replace a subdisk of Ai slightly larger of D
with a disk parallel to D0, to get a new spanning disk A00

i . Then, by putting A00
k = Ak

for any k 6= i, we have a new family A00
1, . . . , A

00
s of spanning disks for |L0|, whose inte-

riors intersect Int(A0
1[ . . .[A0

s) in a smaller number of curves than the original disks
A1, . . . , As. Let �001 , . . . ,�00s be any family of bands disjoint from the disks A00

1, . . . , A
00
s

(observe that �1, . . . ,�s may meet A00
i in D0). Since the disks A00

1, . . . , A
00
s can be obvi-

ously perturbed to make their interiors disjoint from Int(A1 [ . . .[As), the starting
step of the induction applies to transform the bands �1, . . . ,�s into �001 , . . . ,�00s . Final-
ly, these latter can be made into the bands �01, . . . ,�

0
s, by the induction hypothesis.

This completes the proof of the independence of ŠK on the �i’s.

Now we pass to the vertically trivial state |L0|. Recall that we are thinking of it as
a vertically trivial link, that is a vertically trivial diagram together with a compatible
height function. Of course, di↵erent choices of the height function, compatible with
the same diagram, are related by a vertical diagram isotopy and such an ambient
isotopy can be used to relate the resulting labeled ribbon surface tangles.

So, we have only to consider the case of di↵erent choices for the vertically trivial
state |L0|. According to Proposition 1.1.3, any two such choices are related by a
sequence of the following two moves: the first one is a single self-crossing change
of a given component; the second one is a simultaneous change of all the crossings
between two vertically adjacent components.

We first address the second move, which changes the vertical order of two verti-
cally adjacent components. Thanks to what we have already proved, we can choose
the disks A1, . . . , As to be perturbations of those generated by the horizontal inter-
vals with endpoints in |L0| (cf. Section 1.1) and the bands �1, . . . ,�s to satisfy the
following conditions:

1) the intervals [ai, bi] = h(Ai[�i), with i = 1, . . . , s and h being the height function
in the 3-dimensional space, are pairwise disjoint;
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2) the planar diagram of the band �i is disjoint from the projection in the diagram’s
plane of the corresponding disk Ai, for every i = 1, . . . , s.

Assuming that the components of |L0| are numbered according to their vertical
order, let |L0i| and |L0i+1| be the two components involved in the move. We attach
to Li an arbitrary auxiliary band �0i as in Figure 3.5.4 (a) and then perform the
indicated moves which lead to diagram (d) in the same figure. As a result, the
labeling of the entire band Bi changes from (1 2) to (1 4), while the labeling of Bi+1

is left unchanged. This allows us to perform the required crossing changes, bringing
Bi on the top of Bi+1. Figure 3.5.5 describes the main steps in the realization of such
crossing changes in the case when a disk Cj is present in the original crossing. Here,
apart from 1-isotopy, we have used one move (R4) relating the second and the third
diagram. The other case, when the disk Cj is not present in the original crossing,
is obtained by the same steps in the reverse order with the roles of Bi and Bi+1

(and their labels) exchanged. Once all the crossing changes have been performed,
we restore the original labeling of Bi and cancel the auxiliary band �0i, by reversing
the steps from (a) to (d) of Figure 3.5.4. At this point, we are in position to push
the disk Ai and the band Bi in the height interval ]bi+1, ai+2[ through a vertical
isotopy (put ai+2 = 1 if i + 1 = s). We can assume that during this isotopy Ak, Bk

and �k with k 6= i are kept fixed while Ai and Bi are being moved and the necessary
vertical deformations are performed on �i and on those Cj’s, Dj’s and D0

j’s which
form ribbon intersections with Bi. The only problem which can arise here, is that
after such isotopy �i could intersect Ai+1, so that the resulting labeled ribbon surface
tangle would not be a genuine ŠK . To fix this, we can replace the deformed �i by a
legitimate band, thanks to the remark on page 101.
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Bi+1 Bi+1

Bi+1

(R4)

(R4)

Figure 3.5.5. Independence of ŠK on the vertical order of the components of |L0|

Concerning a single crossing change making a vertically trivial component |L0i|
into a di↵erent vertically trivial state of |Li|, there are four cases to be considered,
depending on sign of the crossing and on whether |L0i| coincides with |Li| at that
crossing or not. In all cases, according to Proposition 1.1.3, there exists a disk A0

i

bounded by one of the two arcs of |L0i| determined by the two points projecting to
the changing crossing, and the vertical segment joining these two points. Actually,
such a disk can be thought as a perturbation of a subdisk of Ai, in such a way that
it does not meet the bands �1, . . . ,�s. Moreover, we can choose �i to be attached to
Bi in the portion of it corresponding to |L0i|� BdA0

i.
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Figure 3.5.6 indicates how to realize the crossing change in one of the four cases.
For the other three cases it su�ces to apply a mirror symmetry to all the stages
and/or reverse their order. In step (a), as it was done above, we create a disk D
of label (2 4) attached to id(4 3) through a narrow band � passing through id(3 2).
Then the disk D is moved within a neighborhood of A0

i to let A0
i pass through it,

by 1-isotopy and some moves (R2) and (R4) like in Figure 3.5.4, until diagram (b)
is achieved. After that, we get (e) as described in the intermediate steps. At this
point, we use move (R6) to transfer the two negative half-twists from D to Bi and
we push back D to its original position, by reversing the process from (a) to (b). We
remind that the additional negative full twist which appears on Bi compensates the
change of crossing (cf. step 5 of the construction of SK). Indeed, the move changes
the framing of L0i by �2 and therefore the framing of Bi should change by �1 as it
does.

BiCjγj
(1 2)

(1 2)

Ai Cj

(a) (b) (c)
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Figure 3.5.6. Independence of ŠK on the vertical trivial component |L0
i|

Finally, we prove the independence of ŠK on the strictly regular planar diagram
of K. We recall that two strictly regular planar diagrams represent isotopic Kirby
tangles if they are related through planar isotopy, Reidemeister moves and the moves
presented in Figure 2.2.12.

We observe that any Reidemeister move on the link L of closed framed com-
ponents of K induces the same move on its vertically trivial state L0, and so just
a diagram isotopy on ŠK , provided that none of the involved crossings (before and
after the move) has been changed when passing from |L| to |L0|. The reason is that
in this case the two links coincide inside a small 3-cell where the move takes place
and such 3-cell is free from the Ci’s. We leave to the reader the straightforward ver-
ification that, with the only exception depicted in Figure 3.5.7, a vertically trivial

|

|Li|

Lj | |

|Li|

Lj |

Figure 3.5.7. The exceptional Reidemeister move
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state |L0| of |L| that satisfies this property can be always achieved by a suitable
application of the naive unknotting procedure described in Section 1.1 with height
function on each component as in Figure 1.1.1 (a) or (c), depending on the move. In
the remaining case of Figure 3.5.7, we need to invert at least one of the two crossings
formed by |Li| and |Lj|, in order to get the corresponding components |L0i| and |L0j|
of the vertically trivial state |L0|. Nevertheless, assuming that we invert the crossing
inside the shaded circle, the move still induces diagram isotopy on ŠK .
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Figure 3.5.8. Moving an inverted crossing over/under a pair Di and D0
i

To complete the proof, we consider the isotopy moves of Figure 2.2.12, which
involve the dotted components of K. Moves (a) and (e) in the figure clearly induce
labeled diagram isotopy on ŠK . The same is true for move (d) once a suitable verti-
cally trivial state has been chosen leaving unchanged the involved crossing between
framed arcs. Also moves (b) and (c) induce labeled diagram isotopy on ŠK when
L0 coincides with L at all the involved crossings between framed arcs. Otherwise,
we perform the first move in Figure 3.5.3 on the disks Di and D0

i originating from
the one handle, changing in this way their labels from (1 3) to (1 4). Then, at any
crossing where a disk Ck appears, we proceed as indicated in Figure 3.5.8. Here, four
moves (R4) occur in the second step, while labeled 1-isotopy su�ces for the other
steps. Eventually, we perform backwards the first move in Figure 3.5.3 to restore
the original labels of Di and D0

i. ⇤

Remark 3.5.2. The proof of the independence of ŠK on the choice of the bands
�, � and � in Lemma 3.5.1, works in the following much more general context.

Let S be any labeled ribbon surface tangle in S4 whose set of labels is complete,
i.e. it generates the whole permutation group ⌃4. If S contains a band �i (resp. �i)
attached to a local configuration (included the labeling) as in the left (resp. right)
side of Figure 3.4.5, then up to equivalence moves, such band can be replaced by
any other band �0i (resp. �0i) attached in the same way to that local configuration.
Analogously, if S contains a band �i attached to a (possibly non-orientable) closed
band Bi labeled (1 2) whose core spans a disk Ai as in Figure 3.5.4, and Bi (resp. Ai)
forms ribbon intersections only passing through disks (resp. being passed through
by bands) of label (1 3), then up equivalence moves, �i can be replaced by any other
band �0i attached in the same way to Bi.

Indeed, thanks to the completeness of the labeling, we can always create a tongue
of label (3 4) (resp. (2 4)) and use it to perform the modification described in Figures
3.5.2 or 3.5.3 (resp. Figure 3.5.4) in order to replace the band �i or �i (resp. �i).
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We also observe the same argument still works with any labeling obtained from the
specific one considered above by conjugation in ⌃4.

Lemma 3.5.3. Up to labeled 1-isotopy and moves (R1) and (R2), the labeled
ribbon surface tangle "4

3 ŠK is invariant under 2-equivalence of K.

Proof. According to Definition 2.2.7, in order to prove the invariance of ŠK

under 2-equivalence of K, it is enough to consider the moves in Figure 2.2.7, since
we have already proved the invariance under isotopy. Moreover, in our case K is
an ordinary Kirby tangle and therefore no crossing change is possible, while the
other three moves reduce to the ordinary ones without labels. We also recall that in
addition to moves (R1) and (R2), we can use the moves (R3) to (R6) introduced
in the previous section (cf. Proposition 1.4.3).

A pushing through 1-handle move on K trivially induces labeled isotopy on ŠK .
Similarly, the addition/deletion of a canceling 1/2-pair can be easily interpreted in
terms of equivalence moves on ŠK . In fact, if the disk Di and the loop Lj represent a
canceling pair in K, then in ŠK the band Bj passes only once through Di. Thus, by a
move (R3) we can remove Di and break Bj into two tongues. At this point, by labeled
1-isotopy we can retract such tongues to id(2 1) and after that to retract to id(3 2) the
tongue �i [D0

i and all the �k [ Ck’s related to crossing changes involving Lj.
The case of a 2-handle sliding requires some preliminaries. First of all, we number

the components of L starting from the two ones involved in the sliding, in such a
way that L1 slides over L2. In terms of Kirby tangles, this means to replace L1

with the band connected sum L1#�L2, where L2 is a parallel copy of L2, and � is
a band connecting L1 to L2. Since we have already proved the invariance of ŠK

under isotopy, we can isotope K in such a way that in its planar diagram � is a
blackboard parallel band, which does not form any crossing with the Li’s and lies
in a neighborhood of id(2 1) as shown in Figure 3.5.9 (a).
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q2 B2β2
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δ

L1

L2

L2

tt t′

Figure 3.5.9. Standard set up for a 2-handle sliding

Then, in the construction of ŠK we choose a vertically trivial state |L0| such
that: 1) the vertical order of the components is the one given by the numbering (|L0i|
lies under |L0j|, for i < j); 2) the minimum point p1 (resp. p2) and the maximum
point q1 (resp. q2) of the height function h on |L01| (resp. |L02|) coincide with the end
points of the attaching arc of � to L1 (resp. L2), as in Figure 3.5.9 (b). Here, the
arrows indicate the orientations that we will use in the framing computation at the
end of the proof, so they are not relevant for the moment. Finally, we choose �1 and
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�2 to be blackboard parallel bands, such that � can be thought to run parallel to
them and to the part of the boundary of id(2 1) between them, as in Figure 3.5.9 (c).
For the sake of convenience, the framed curves L2 and L02 and the ribbon B2 are
assumed to be blackboard parallel outside the twist boxes t and t0 in Figure 3.5.9.
The reader should be aware that the numbers of twists inside those boxes may di↵er,
accordingly to step 5 of the construction of ŠK .

(1 3)

T T ′ T ′

(1 2)
(1 2)

(1 2)
(1 2)

(1 2)
(1 2)

(1 2)
(1 2)

(1 2)
(1 2)

(1 2)
(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(b) (c)(a) (d)

(1 3) (1 3)

B1

B2

B1

B2

B1 B1

B2 B2

B2 B′
2 B′

2

t′

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

Figure 3.5.10. A 2-handle sliding in terms of moves on "4
3 ŠK

Once it has been set up in this way, the sliding can be interpreted in terms of
moves on "4

3 ŠK , as sketched in Figure 3.5.10. Here, we omit to draw the reduction
ribbon id(4 3) that is only implicitly involved in the step from (b) to (c).

We think of B1 as a 1-handle attached to id(2 1) (like Bj in Figure 3.4.10) and
slide one of its attaching arcs as indicated by the arrows in (a), to form a new ribbon
B2 parallel to B2. Before reaching the twist box t0, this sliding can be entirely realized
by labeled diagram isotopy, except for the labeled 1-isotopy moves needed to pass
through the Di’s and Ci’s encountered by B2. Each time a disk Ci is passed through,
two new ribbon intersections appear as in the first diagram of Figure 3.5.11. Then,
we use again 1-isotopy to split Ci into two twin disks similar to the original one, as
suggested by the rest of Figure 3.5.11.

(1 2)
(1 3)

(1 2)

(1 2)

(1 2)

(1 2)

(1 3)

(1 2)

(1 2)

(1 2)

(1 2)

(1 3)

(1 2)

(1 2)

(1 2)

(1 2)

(1 3)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2) (1 2) (1 2) (1 2)

(1 2) (1 2) (1 2)

Figure 3.5.11.

To get the twist box T in (b), after having followed all the twists of B2 in the
twist box t0, we add some further crossings between B2 and B2 (together with further
Ci’s), in order to make them unlinked. Figure 3.5.12 shows how to add a positive
crossing; for a negative one it su�ces to mirror the figure. Here, some moves other
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than 1-isotopy are needed: one move (R5) in the first step; two opposite moves (R6)
in the third; two moves (R1) in the fourth. In particular, we observe that B2 enters
and leaves the box T in Figure 3.5.10 (b) on the same side of B2.

(1 2)

(1 2)

(1 2)

(1 3)(1 2)

(1 2)

(1 2)

(1 3) (1 2)

(1 2)

(1 2)

(1 3)

(1 2)

(1 2)

(1 2)

(1 3) (1 2)

(1 2)

(1 2)

(1 3) (1 2)

(1 2)

(1 2)

(1 3)

(2 3)(2 3)(2 3)

(2 3)(2 3)
(R5)

(R6) (R1)

Figure 3.5.12.

Now, we consider a disk A2 spanned by |L02| as in step 6 of the construction
of ŠK , and perturb it near B2 in such a way that it becomes disjoint from B2,
while remaining disjoint from all the other Bi’s and continuing to form only clasps
and ribbon intersections with the rest of the ribbon surface tangle. Indicating the
perturbed disk still by A2, we use it to replace the band �2 in (b) by that in (c) and
at the same time pull B2 below B2. To do that we first perform steps (a) to (d) in
Figure 3.5.4 with i = 2, to change the labeling of B2 from (1 2) to (1 4). Then we
change all the crossings where B2 passes over B2, by operating as in Figure 3.5.5.
Finally, we perform the last step in Figure 3.5.4 obtaining (e) and eventually cut
and retract �2. In this way, we get the diagram in Figure 3.5.10 (c), where B0

2 and
T 0 di↵er from B2 and T only by the performed crossing changes. Eventually we get
(d) by completing the sliding as indicated by the arrow in (c).

We claim that the labeled ribbon surface tangle in Figure 3.5.10 (d) coincides up
to 3-dimensional isotopy with ŠK0 , where K 0 is the ordinary Kirby diagram obtained
from K by replacing L1 with L1#�L2.

To prove this claim, let L02 be the framed unknot whose base curve is the core of
the ribbon B0

2 and whose framing is the double of that represented by B0
2. Taking into

account our starting assumptions on the height function of |L0|, the link formed by
|L01#�L02|, |L02|, . . . , |L0s| is vertically trivial for a suitable height function compatible
with the planar diagram in Figure 3.5.10 (d). Moreover, |L01#�L02| is the core of
the ribbon B1#�B0

2 and fr(L01#�L02) = fr(L01) + fr(L02) is the double of the framing
represented by B1#�B0

2. Therefore, still referring to diagram (d) in Figure 3.5.10,
our claim amounts to say that by inverting the crossings marked by the presence
of a disk Ci in the framed link formed by L01 #�L02, L

0
2, . . . , L

0
s, we get the framed

link formed by L1 #�L2, L2, . . . , Ls, up to diagram isotopy of K. It is clear from
the construction that such crossing inversions produce a framed link of components
L1#�

bL2, L2, . . . , Ls, where bL2 is a framed knot whose base curve |bL2| is parallel to
|L2|. Hence, it is left to prove that lk(|L2|, |bL2|) = lk(|L2|, |L2|) = fr(L2) (in other
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words, |bL2| and |L2| represent the same framing of |L2|) and fr(bL2) = fr(L2) = fr(L2),
where in both cases the second equality directly derives from the construction.

Since B2 and B0
2 are vertically separated, lk(|L02|, |L02|) = 0 and thus lk(|L2|, |bL2|)

is the opposite of the signed number of crossings between B2 and B0
2 marked by a Ci

in (d). On the other hand, being also B2 and B2 unlinked, this equals the opposite of
the signed number of crossings between B2 and B2 marked by a Ci in (b). According
to the construction of the diagram in (b), there are � fr(L02) such crossings inside
the twist box T , while the number of them outside the twist box T is the double of
the signed number of the self-crossings of B2 marked by a Ci in SK . But this last
number is equal to the di↵erence fr(L02) � fr(L2), so we can immediately conclude
that lk(|L2|, |bL2|) = fr(L2).

Finally, the equality fr(bL2) = fr(L2) can be derived in a similar way from fr(L02) =
2 fr(B0

2) = 2 fr(B2) = 2 fr(B2) = fr(L02), once one observes that the signed number of
the self-crossings of B0

2 marked by a Ci in (d) coincides with that of the self-crossings
of B2 marked by a Ci in SK . ⇤

Proposition 3.5.4. The map ⌅4 defined ⌅4(Im) = J�499)1⇧Jm for every m � 0
and ⌅4(K) = "4

3 ŠK for every Kirby tangle K in K1 (cf. Proposition 3.6.3), represents
a faithful functor ⌅4 : K1 ! Sc

4, such that ⌅4(K1) ⇢ S2
499)1 and #4

1 �⇥4 � ⌅4 = idK1 .
Moreover, for any two morphisms K : Im0 ! Im1 and K 0 : Im0

0
! Im0

1
in K1 we have

⌅4(K ⇧K 0) = "4
3 (Qm1+m0

1
� (RK ⇧⇧RK0) �Qm0⇧m0

0
) (cf. Figure 3.4.1).

Proof. In the light of the previous Lemmas 3.5.1 and 3.5.3, ⌅4 is well-defined as
a map. To prove that it is a functor, we have to show that it preserves the identity
morphisms and the composition of morphisms.

(b)(a)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)σ3 1!!✮

σ3 1!!✮ (1 2)

(1 2)σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

(R3)band
changes

(c) (d)

Figure 3.5.13. ⌅4 preserves the identity morphisms

Concerning the identities, we observe that for K = idIm the labeled ribbon sur-
face tangle ŠK looks like in Figure 3.5.13 (a), where only the rightmost of the m
blocks forming TK (in the box), Qm and Qm are drawn. The rest of Figure 3.5.13
outlines how we can reduce this block to a single identity ribbon. Namely, to get
(b) we change the �i’s and the �i’s relative to the other blocks and laying between
the uppermost and lowermost horizontal bands of label (1 2) in the figure, in such a
way that they allow the labeled 1-isotopy from (b) into (c). This can be done by the
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same arguments used in the proof of Lemma 3.5.1 thanks to Remark 3.5.2, by using
the stabilization ribbon id(4 3) that is there even if not drawn in the figure. Then,
we use move (R3) to cut the horizontal bands in (c) and we retract the resulting
tongues to get (d). Once the reduction of the rightmost block has been completed,
the process can be iterated to reduce one by one, from right to left, also the other
m� 1 blocks to identity ribbons, hence all ⌅4(K) to the identity.

Now let us consider the composition. Given two morphisms K1 : Im0 ! Im1

and K2 : Im1 ! Im2 in K1, we have to prove that "4
3(ŠK2 � ŠK1) and "4

3 ŠK2�K1 are
equivalent up to 1-isotopy and moves (R1) and (R2). This will follow once show
that RK2 �Qm1 �Qm1 �RK1 is equivalent to RK2�K1 . Apart from the two reduction
ribbons on the left, the composition Qm1 � Qm1 consists of m1 blocks like the one
shown in Figure 3.5.14 (a). Each block contains two arcs labeled (1 2), ending one
in the source and the other in the target and originating from two open components
in K1 and K2, which create a single closed component in K2 � K1. Figure 3.5.14
describes in a schematic way the transformation of these blocks one by one, starting
from the left. Let B1 and B2 be the closed bands in RK1 and RK2 to which the
two arcs of the block shown in (a) belong. By replacing bands if necessary, we can
assume that their attaching bands �1 and �2 are the as shown in (b), where we have
also slided the two innermost horizontal bands in (a) until they form an extra closed
ribbon connected to id(2 1). In the last step from (c) to (d) we first use two (R3)
moves to cut and retract the horizontal bands passing through disks, so that in the
resulting tangle B1 and B2 are replaced with a single closed band attached to id(1 2)

by a band �. Then, we change such � in order to allow the iteration of the whole
process to the subsequent blocks of Qm1�Qm1 .

(b) (c)(a)

(1 2) (1 2)

(1 2) (1 2)

(1 2) (1 2)

(1 2) (1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(d)

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

(R3)band
changes

Figure 3.5.14. ⌅4 preserves the composition of morphisms

Finally, the equality #4
1⇥4 � ⌅4 = idK1 and hence the faithfulness of ⌅4 immedi-

ately follow from Propositions 3.3.4 and 3.4.3, while the second part of the statement
is just a reinterpretation of Remark 3.4.2 under the stabilization "4

3. ⇤

We note that ⌅4 : K1 ! Sc
4 will be proved to be a category equivalence in the

next section (cf. Theorem 3.6.4), and therefore it induces a monoidal structure on
Sc

4, which we do not provide in explicit form.

Proposition 3.5.5. For any n � 4, ⌅n = "n
4 � ⌅4 : K1 ! Sc

n is a faithful
functor and satisfies the identity #n

1 �⇥n � ⌅n = idK1 .

Proof. This is a direct consequence of Propositions 3.3.4, 3.4.3 and 3.5.4. ⇤
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3.6. Equivalence between Kc
n and Sc

n for n � 4

We want to prove that the functors ⇥n : Sc
n ! Kc

n and ⌅n : K1 ! Sc
n are

equivalences of categories for any n � 4. Taking into account Propositions 1.5.3 and
3.5.5, to achieve this result it is enough to show that the functor ⌅4 : K1 ! Sc

4 is full
and that any object in Sc

n is isomorphic to one in its image, i.e. that the inclusion
of ⌅4(K1) in Sc

4 is an equivalence of categories.

Lemma 3.6.1. Any labeled ribbon surface tangle T : J�399)1 ⇧ J�0 ! J�1 in S3

is equivalent to a composition Tl � . . . � T1, where each Tk is an expansion (that is
a product with some identity ribbons on the left and/or on the right) of one of the
special elementary ribbon surface tangles presented in Figure 3.6.1.

(e)

(i j)(i j)

(i j)

(b)

(i j) (i j)

(i j) (i j)

(i j) (1 3)

(2 3) (1 2)

(2 3)

(1 3) (1 2)

(a)

(i j)

(i j)

(c) (d) (f ) (g)

Figure 3.6.1. Special elementary morphisms in S3 ((i j) 2 �3)

Proof. According to Proposition 1.3.7, we can assume that T is presented by a
3-labeled special planar diagram, that is a planar diagram consisting of some spots
like (a) to (e) and (h) in Figure 1.3.6 and some flat bands, with a compatible label-
ing in �3. Moreover, we can convert all the negative half-twists occurring in such
a diagram into positive ones and crossings, by using labeled versions of the moves
(S14) and (S17) in Figure 1.3.11.

Then, we proceed as shown in Figure 3.6.2 to eliminate all the monocromat-
ic ribbon intersections and all the crossings. More precisely, we first eliminate
the monocromatic ribbon intersections and crossings by performing the labeled 1-
isotopies described in (a) and (b) respectively. Here, the tongues labeled (i k) have

(i k)

(i j)

(i j)

(i j)

(i j)

(i j)

(j k)

(j k) (i k)

(i j)

(i j)

(i j)

(j k)

(i j)

(a)

(i k)

(i j)

(i j)

(i j)

(i j)

(i j)

(i k)

(b)

(R5)

(c)

(i j)

(i j) (i j)

(i j)

(i k)

(i k)

(i k)

(i k)

(i k)

Figure 3.6.2.
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been pulled out of the closest ribbon with that label. Observe that such ribbon al-
ways be created, due to the form of the source. Subsequently, we eliminate all the
remaining crossings, including the new ones deriving from (a) and (b), by the moves
depicted in (c). Eventually, we put again the diagram into special form by move
(S2), which only introduces positive half-twists.

After that, all the three transpositions of �3 are involved in the labeling of any
surviving ribbon intersection, so we can use move (R1) to adjust it in such a way
that the disk which is passed through is the one with label (1 2).

Finally, by using planar isotopy as in the proof of Proposition 3.1.2, we can
express T as Tl � . . . � T1, where each Tk is an expansion of one of the elementary
morphisms of Figure 3.1.1. The previous form of T guarantees that no spot like (e),
(e 0) and (f 0) occurs. Moreover, we can also eliminate all the spots like (g 0), (c 0) and
(b) in the order, by using move (I6), (I3) and (I16) respectively. This leaves us with
the required expression of T . ⇤

Proposition 3.6.2. The inclusion of ⌅4(K1) in Sc
4 is a category equivalence.

Proof. We observe that ⌅4(K1) ⇢ "4
3 Sc

3. Moreover, according to Proposition
3.2.8, the inclusion of "4

3 Sc
3 in Sc

4 is a category equivalence. Therefore, it su�ces to
show that the inclusion ⌅4(K1) ⇢ "4

3 Sc
3 is an equivalence as well. By Proposition

1.5.4, this amounts to say that any object in "4
3 Sc

3 is isomorphic to one in the image
of ⌅4 and that any morphisms in "4

3 Sc
3 between two objects in the image of ⌅4 is

the image of a morphism in K1 under ⌅4.
About objects, we recall that those in the image of ⌅4 are given by J�499)1 ⇧ Jm

with m � 0, where Jm denotes the sequence of m intervals each labeled by (1 2).
For any � = ((i1 j1), . . . , (im jm)) 2 ⇧�3, we define ⇣� : J�399)1⇧J� ! J�399)1⇧Jm, as the
composition ⇣� = ⇣�,m � . . . � ⇣�,1, where ⇣�,h is the identity if (ih jh) = (1 2), while it
is illustrated in Figure 3.6.3 for (ih jh) equal to (1 3) and (2 3). Here, the horizontal
tongues pass in front of the first h� 1 vertical ribbons originating in J�, and form
ribbon intersections with the h-th one. The ⇣�,h’s are isomorphisms, their inverses
being obtained by vertical reflection, hence ⇣� is an isomorphism as well. Then, the
desired isomorphism between the generic object J�499)1 ⇧ J� in "4

3 Sc
3 and an object in

the image of ⌅4 is represented by id499)3 ⇧ ⇣� : J�499)1 ⇧ J� ! J�499)1 ⇧ Jm.

h-th ribbon

(3 2)

(1 3)

(1 2)

(3 1)

(2 3)

(1 2)
σ3 1!!✮ σ3 1!!✮

σ3 1!!✮ σ3 1!!✮

Figure 3.6.3. The isomorphism ⇣�,h

The proof that any morphism S : J�499)1 ⇧ Jm0 ! J�499)1 ⇧ Jm1 in "4
3 Sc

3 is in the
image if ⌅4, requires more work. By definition, S = (id�499)1⇧T )� (id(4 3) ⇧��399)1⇧ idm0)
for some T : J�399)1⇧ Jm0! Jm1 in S3. Then, we have the decomposition

S = id(4 3) ⇧ (⇣�1 � (id�399)1⇧ T ) � ⇣�1
�399)1⇧�0

� ⇣�399)1⇧�0 � (��399)1⇧ id�0) � ⇣�1
�0

) ,

– 112 –



where ⇣�1 and ⇣�1
�0

act as identities, being the elements of Jm0 and Jm1 all labeled by
(1 2). Moreover, by Lemma 3.6.1 we can assume that T is a composition Tl � . . .�T1,
where each Tk 2 S3 is an expansion of one of the special elementary morphisms in
Figure 3.6.1. Therefore, if J�k

0
and J�k

1
are respectively the source and the target

of Tk, by inserting in id�399)1 ⇧ T = (id�399)1 ⇧ Tl) � . . . � (id�399)1 ⇧ T1) the canceling pair
⇣�1
�k+1
0
� ⇣�k

1
between id�399)1⇧ Tk+1 and id�399)1⇧ Tk for any k = 1, . . . , l � 1, we get

⇣�1 � (id�399)1⇧ T ) � ⇣�1
�399)1⇧�0

= (⇣�l
1
� (id�399)1⇧ Tl) � ⇣�1

�l
0
) � . . . � (⇣�1

1
� (id�399)1⇧ T1) � ⇣�1

�1
0
) .

On the other hand, Figure 3.6.4 shows that ⇣�399)1⇧�0 � (��399)1⇧ id�0)� ⇣�1
�0

is equivalent
to the composition of id(3 2) ⇧�(1 2) ⇧ id�0 and two morphisms having the same form
as the id�399)1⇧ Tk’s above.

(R1)

(1 2)

σ3 1!!✮σ3 1!!✮
σ3 1!!✮

(1 2) (1 2)(1 2)σ3 1!!✮ σ3 1!!✮
σ3 1!!✮ σ3 1!!✮

σ3 1!!✮

Figure 3.6.4.

In conclusion, it is enough to prove that a ribbon surface tangle S 2 "4
1 S399)1 is

in the image of ⌅4 in the special cases when S = id�499)2⇧�(1 2) ⇧ idm for some m � 0,
or S = id(4 3) ⇧ (⇣�1 � (id�399)1 ⇧ T ) � ⇣�1

�0
), with T : J�0 ! J�1 being any expansion in

S3 of one of the special elementary morphisms in Figure 3.6.1.

We start with the simplest cases when m = 0 and T is an elementary morphism.
Namely, Figure 3.6.5 shows that id(4 2) ⇧�(1 2) is equivalent to ⌅4(⌘1), where ⌘1 is a
single framed arc (cf. Figure 2.3.1). Here, we first modify the ribbon surface tangle
by 1-isotopy and then use move (R3) to eliminate the pair of vertical disks and the
horizontal band passing through them.

(1 2) (1 2) (1 2)
σ4 1!!✮

σ4 1!!✮

σ4 1!!✮

σ4 1!!✮

σ4 1!!✮

σ4 1!!✮

(R3)

Ξ4

Figure 3.6.5.

Concerning id(4 3)⇧(⇣�1 �(id�399)1⇧T )�⇣�1
�0

), we first observe that, if T is one of the
tangles (a) to (e) in Figure 3.6.1, then the equality id(4 3) ⇧ (⇣�1 � (id�399)1⇧T ) � ⇣�1

�0
) =

id�499)1⇧ T can be immediately seen to hold just by using 1-isotopy. So, for those T it
is enough to treat the case (i j) = (1 2). This has been already done for T = id(1 2)

in the proof of Proposition 3.5.4, while it is done in Figure 3.6.6 for the other
T ’s, from (b) to (e). This time, the first modification of each ribbon surface tangle
consists in the elimination of the pairs of vertical disks on the top and on the bottom
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(belonging to the Qm1 ’s and the Qm0 ’s), realized by moves (R3) after suitable 1-
isotopy (cf. Figure 3.6.5, where an analogous elimination is detailed into two steps).

(1 2) (1 2)
σ4 1!!✮

σ4 1!!✮

σ4 1!!✮(1 2)
σ4 1!!✮

σ4 1!!✮ σ4 1!!✮

σ4 1!!✮

σ4 1!!✮

σ4 1!!✮

σ4 1!!✮
(1 2) (1 2)

σ4 1!!✮

σ4 1!!✮

σ4 1!!✮

σ4 1!!✮
(1 2) (1 2)

σ4 1!!✮

σ4 1!!✮

(1 2) (1 2)

σ4 1!!✮

σ4 1!!✮

(1 2) (1 2)

(1 2) (1 2)

(1 2) (1 2)

(1 2)

(1 2) (1 2)

(R3)(R3)

(R3)(R3)

(R3)(R3)

Ξ4

Ξ4

Ξ4

Figure 3.6.6.

The cases when T coincides with (f ) and (g) are shown in Figure 3.6.7. This
figure is more sketchy then the previous ones. In particular, in the starting ribbon
surface tangles, the two pairs of vertical disks belonging to Q2 are omitted, assuming
that they have been previously eliminated as above. The first step in both cases starts
with the further elimination of two of the three pairs of vertical disks, once again
by the same procedure as above even if a band replacement is needed in the first
case. This is followed by the inversion of some of the ribbon intersection formed
by the surviving pair, like in move (S2). The resulting half-twists, together with
the preexisting one in the first case, are then canceled with the help of move (R6).
At this point, the second step just consists of three (R1) moves and 1-isotopy.

Now, it remains to consider the cases of id�499)2 ⇧ �(1 2) ⇧ idm with m > 0, and
id(4 3) ⇧ (⇣�1 � (id�399)1⇧ T ) � ⇣�1

�0
) with T being a non-trivial expansion in S3 of one of

the special elementary morphisms in Figure 3.6.1.
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σ4 1!!✮

σ4 1!!✮
(1 2)

(1 2)

(1 2)

σ4 1!!✮

σ4 1!!✮
(1 2) (1 2)

(1 2)

σ4 1!!✮

σ4 1!!✮
(1 2) (1 2)

(1 2)

σ4 1!!✮
(1 2) (1 2)

(1 2)
σ4 1!!✮

σ4 1!!✮
(1 2) (1 2)

(1 2)
σ4 1!!✮

(2 3)

(1 3)

(1 3)

(2 3)

σ4 1!!✮

σ4 1!!✮
(1 2)

(1 2)

(1 2)

(R1)

(R1)

(R3)
(R6)

(R3)
(R6)

Ξ4

Ξ4

Figure 3.6.7.

The following claim allows us to deduce these cases from the spacial ones we have
just considered, when m = 0 and T is an elementary morphism, by a straightforward
inductive argument based on the number of the expansion ribbons.

Given two morphisms K and K 0 inK1, the claim relates the image of K⇧K 0 under
⌅4, with the images of K and K 0. Unfortunately, we do not have an explicit monoidal
structure on "4

1 S399)1, and this makes the statement quite technical. Actually, for the
present aim, the claim could be restricted by the assumption that at least one of T
and T 0 is an identity morphism, but this would not make its proof simpler.

Claim. Let T : J�399)1⇧ J�0 ! J�399)1⇧ J�1 and T 0 : J�00 ! J�01 be morphisms in S3,
such that id(4 3) ⇧ (⇣�1 � T � ⇣�1

�0
) = ⌅4(K) and id(4 3) ⇧ (⇣�01 � (id�399)1 ⇧ T 0) � ⇣�1

�00
) =

⌅4(K 0) for some K and K 0 in K1. Then

id(4 3) ⇧ (⇣�1⇧�01 � (T ⇧ T 0) � ⇣�1
�0⇧�00

) = ⌅4(B�1,�01 � (K ⇧K 0) �B�1
�0,�00

) .

Here, given � = ((i1 j1), . . . , (im jm)) and �0 = ((i01 j01), . . . , (i
0
m0 j0m0)) in ⇧�3, we

denote by B�,�0 the framed 2(m + m0)-braid defined as B�,�0 = bm0 � . . . � b1, where
bh is the framed 2(m + m0)-braid shown in Figure 3.6.8 if (i0h j0h) = (2 3), while it is
the identity otherwise.

m + m′ pairs of strings

(m+h)-th pair

Figure 3.6.8. The framed 2(m + m0)-braid bh for (i0h j0h) = (2 3)
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To prove the claim, let us consider ⇣�1⇧�01 � (T ⇧ T 0) � ⇣�1
�0⇧�00

and look at Figure
3.6.9, where: m0,m0

0,m1,m0
1 denote the lengths of �0,�00,�1,�01 respectively. Here

once again the reduction ribbon id(4 3) is omitted, being involved only in performing
the necessary band replacements as in Remark 3.5.2.

Jm1

σ1

σ0

−1

Jm1 Jm1

Jm0 Jm0

ζ
σ1

σ0

−1

Jm1

Jm0 Jm0

σ1

−1
σ0

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

(b)(a)

Jm0

Jm1Jm1

Jm0

σ1

−1

σ1

σ0

−1

σ0

Jm1 Jm1

Jm0 Jm0

σ0

−1

σ1

−1

σ1

σ1

σ0

σ0

−1

σ3 1!!✮

σ3 1!!✮ σ3 1!!✮

σ3 1!!✮

(c) (d)

ζ

ζ

ζ

ζ

ζ

Qm0

Qm1

Qm1

Qm0

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

Qm1

Qm0

Qm0

Qm1

T T T

T TK K

TK

TK

Figure 3.6.9.

Diagram (a) in the figure is obtained by decomposing the natural isomorphisms
⇣�1⇧�01 and ⇣�1

�0⇧�00
, according to the identity ⇣�⇧�0 = ⇣ 0�0 � (⇣� ⇧ id�0), with

⇣ 0�0 = (id499)1 ⇧ ��,�0) � (⇣�0 ⇧ id�) � (id499)1 ⇧ ��1
�,�0) = ⇣�⇧�0,m+m0 � . . . � ⇣�⇧�0,m+1,

where m and m0 denote the lengths of � and �0 respectively. Then, we get (b) by
using the hypothesis that id(4 3) ⇧ (⇣�1 � T � ⇣�1

�0
) = ⌅4(K), and (c) just by inserting

the canceling pairs ⇣ 0�00
�1 � ⇣ 0�00 and ⇣ 0�01

�1 � ⇣ 0�01 . Here, the horizontal bands forming
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the pseudo-products ⇧�,�,� are fused all together in their terminal parts outside the
boxes. In order to get (d), we first change those bands into new ones which pass
under ⇣ 0�00

�1 and reach the reduction ribbons id�399)1 in the region between ⇣ 0�00
�1 and

⇣ 0�00 and then apply the hypothesis that id(4 3) ⇧ (⇣�01 � (id�499)1 ⇧ T 0) � ⇣�1
�00

) = ⌅4(K 0)
and the fact that RK ⇧⇧ RK0 = RK⇧K0 (see Remark 3.4.2). In diagram (d), Q0

m0
1

=
(id399)1 ⇧ �2m0

1,2m1) � (Qm0
1
⇧ id2m1) � (id399)1 ⇧ ��1

2m0
1,2m1

) coincides with the factor of
Qm1+m0

1
relative to Jm0

1
in the decomposition Qm1+m0

1
= (Qm1 ⇧ idm0

1
) � Q0

m0
1
, while

Q0
m0

0
= (id399)1⇧�2m0

0,2m0)�(Qm0
0
⇧ id2m0)�(id399)1⇧��1

2m0
0,2m0

) coincides with the factor of
Qm0+m0

0
relative to Jm0

0
in the decomposition Qm0+m0

0
= Q0

m0
0
� (Qm0 ⇧ idm0

0
).

Now, we want to show that, in the presence of the reduction ribbon id(4 3), the
subtangles ⇣ 0�01� (Qm1⇧ idm0

1
) � ⇣ 0�01

�1 �Q0
m0

1
and Q0

m0
0
� ⇣ 0�00

�1 � (Qm0 ⇧ idm0
0
) � ⇣ 0�00 in Figure

3.6.9 (d), can be respectively replaced by Qm1+m0
1
� Z�1,�01 and Z�1

�0,�00
� Qm0+m0

0
,

with the tangles Z defined as follows. Given � = ((i1 j1), . . . , (im jm)) and �0 =
((i01 j01), . . . , (i

0
m0 j0m0)) in ⇧�3, Z�,�0 = zm0 � . . . � z1, where zh is the tangle shown in

Figure 3.6.10 if (i0h j0h) = (2 3), while it is the identity otherwise. Observe that the
zh’s, hence Z�,�0 as well, are isomorphisms with their inverses obtained by vertical
reflection.

(3 1)

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

σ3 1!!✮

(3 1)

J2(m+m′)

J2(m+m′)

J2(m+m′)

J2(m+m′)

(m+h)-th pair

Figure 3.6.10. The 3-labeled ribbon surface tangle zh for (i0h j0h) = (2 3)

The proof that ⇣ 0�01� (Qm1⇧ idm0
1
) � ⇣ 0�01

�1 �Q0
m0

1
can be replaced by Qm1+m0

1
�Z�1,�01

goes by induction on the length m0
1 of �01, starting with the trivial case of m0

1 = 0.
The inductive step for m0

1 � 1 presents some di�culties only when (i0m0
1
j0m0

1
) =

(2 3). Indeed, if (i0m0
1
j0m0

1
) = (1 2), both ⇣�1⇧�01,m1+m0

1
and ⇣�1

�1⇧�01,m1+m0
1

are identities,
so there is nothing to prove. While if (i0m0

1
j0m0

1
) = (1 3), after a suitable replacement

of the bands attached to id(3 2), ⇣�1⇧�01,m1+m0
1

and ⇣�1
�1⇧�01,m1+m0

1
can be moved to be

contiguous and then canceled.
The case of (i0m0

1
j0m0

1
) = (2 3) is treated in Figure 3.6.11. Here, diagram (a) is

obtained by applying the induction hypothesis to the first m0
1 � 1 blocks of Q0

m0
1
.

In the same diagram, the horizontal bands labeled (3 1) represent ⇣�1⇧�01,m1+m0
1

and
⇣�1
�1⇧�01,m1+m0

1
, and all the bands that should be connecting the left side of the box to

the reduction ribbon id(3 2) are fused together. To get (b), we first replace the bands
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connecting the vertical disks to id(3 2) with new ones, whose attaching arcs in id(3 2)

lie over that of ⇣�1⇧�01,m1+m0
1
, on the top of the diagram. Similarly, we replace the

bands coming out from the left side of the box, moving their attaching arcs in id(3 2)

under that of ⇣�1
�1⇧�01,m1+m0

1
, on the bottom of the diagram. All those replacements

can be done thanks to Remark 3.5.2. The new bands (not drawn in the diagram)
can be suitably chosen, in such a way that they allow the slidings we are going to
perform in order to get (c). Moreover, we expand a tongue from id(4 3) and move it
by 1-isotopy and move (R4) until it reaches the final position in diagram (b). As
a consequence, the horizontal bands forming ⇣�1⇧�01,m1+m0

1
and ⇣�1

�1⇧�01,m1+m0
1

acquire
labels (4 1). Then, we slide down those bands and the box as suggested by the
arrows, up to their new position in (c). In doing that, we use move (R4) to let the

σ4 1!!✮

σ4 1!!✮

(1 2)

(3 1)

(1 2)(1 2)

(3 1)

σ4 1!!✮

σ4 1!!✮

(1 2)

(4 1)(4 3)

(1 2)(1 2)

(4 1)

σ4 1!!✮

σ4 1!!✮

(1 2)

(1 2)(1 2)

σ4 1!!✮

σ4 1!!✮

(1 2)

(1 2)(1 2)

(b)

(c)

(a)

(d)

zm1−1◦ ... ◦ z1

Jm1+m1−1

J2(m1+m1−1)

zm1−1◦ ... ◦ z1

zm1−1◦ ... ◦ z1zm1−1◦ ... ◦ z1

Jm1+m1−1 Jm1+m1−1

Jm1+m1−1

J2(m1+m1−1)

J2(m1+m1−1)J2(m1+m1−1)

band
changes

(R4)

(R2-4)

(R4)

Figure 3.6.11.
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topmost band pass through the two short bands labeled (2 3) in the middle of each
of the first m1 + m0

1 � 1 pairs of vertical disks. While for the (m1 + m0
1)-th pair, we

use move (R2) to let the rightmost vertical disk pass through both the ⇣’s. To pass
from (c) to (d), we disentangle the vertical disk attached to id(4 3) by moving it to
the right, as indicated by the arrow, and use once again move (R4) to let it pass
through the vertical bands, and finally we retract the resulting tongue to id(4 3).

This completes the proof that ⇣ 0�01� (Qm1⇧ idm0
1
)� ⇣ 0�01

�1 �Q0
m0

1
can be replaced with

Qm1+m0
1
�Z�1,�01 . The replacement of Q0

m0
0
�⇣ 0�00

�1 � (Qm0 ⇧ idm0
0
)�⇣ 0�00 by Z�1

�0,�00
�Qm0+m0

0

is symmetric and it is left to the reader.
Once both those replacements have been performed, we are left with Z�1,�01 �

(id�399)1 ⇧�,�,� TK⇧K0) �Z�1
�0,�00

, which is equal to ŠK00 for K 00 = B�1,�01 � (K ⇧K 0) �B�1
�0,�00

and a suitable choice of the vertically trivial state involved in the construction. ⇤

Before going on to our main theorem, we want to see the e↵ect of Proposition
3.6.2 on the definition of the functor ⌅4 itself. In the previous section we defined it
by putting ⌅4(K) = "4

3 ŠK for any Kirby tangle K 2 K1, where the check means
that the trivial state in point 3 of the construction of the ribbon surface tangle SK

(see Section 3.4) has been actually required to be vertically trivial. As a consequence
of Proposition 3.6.2, we can now relax such extra requirement and remove the check
from the definition of ⌅4. This is the content of the next proposition.

Proposition 3.6.3. Given a Kirby tangle K 2 K1, the equivalence class of
the labeled ribbon surface tangle "4

3 SK does not depend of the choices involved in
the construction of SK . In particular, it does not depend on the choice of the trivial
state occurring in point 3 of that construction. Then, we can write ⌅4(K) = "4

3 SK

without requiring any more the vertically triviality of such state.

Proof. Let K and SK be as in the statement. Since the equivalence class of
"4

3 SK is a morphism between two objects in the image of ⌅4, Proposition 3.6.2 tells
us that it can be written in the form ⌅4(K 0) = "4

3 ŠK0 for some Kirby tangle K 0 2 K1.
Then, Propositions 2.3.9, 3.3.2, 3.3.4 and 3.4.3, give us the chain of equalities K =
⇥3(SK) = #4

1⇥4("4
3 SK) = #4

1⇥4("4
3 ŠK0) = ⇥3(ŠK0) = K 0 holding in K1. Moreover,

from K = K 0 in K1 we get "4
3 ŠK = "4

3 ŠK0 in "4
1 S399)1, thanks to Proposition 3.5.4.

Thus, the starting ribbon surface tangle SK turns out to be equivalent to ŠK . At
this point, Lemmas 3.5.1 and 3.5.3 allow us to conclude the proof. ⇤

Finally, let us state and prove the main equivalence theorem.

Theorem 3.6.4. For any n � 4, the functor ⌅n : K1 ! Sc
n and the braided

monoidal functor ⇥n : Sc
n ! Kc

n (cf. Proposition 3.3.2) are category equivalences.
Moreover, #n

1 �⇥n � ⌅n = idK1 , while ⌅n � #n
1 �⇥n is naturally equivalent to idSc

n
.

Proof. According to Proposition 3.5.5, #n
1 �⇥4 � ⌅4 = idK1 , hence ⌅4 : K1 ! Sc

n

is a faithful functor. Moreover, Proposition 3.6.2 implies that ⌅4 is full and that any
object in Sc

n is isomorphic to one in its image. Then, ⌅4 is a category equivalence by
Proposition 1.5.3. Since "n

1 is also a category equivalence by Proposition 2.3.9, we
have that ⌅n = "n

4 � ⌅4 : K1 ! Sc
n is such for any n � 4. Since #n

1 � ⇥n � ⌅n = idK1

by Proposition 3.5.5, ⇥n : Sc
n ! Kc

n is a category equivalence as well. ⇤
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4. Universal groupoid ribbon Hopf algebra

This chapter is dedicated to the construction and the study of the algebraic
categories Hr

n and of the functors �n : Hr
n ! Kn. For any n � 1, we will define

a suitable subcategory Hr,c
n ⇢ Hr

n together with an equivalence reduction functor
#n

1 : Hr,c
n ! Hr

1, and show that the restriction �n : Hr,c
n ! Kc

n is a category equiva-
lence. In particular, the algebra Hr = Hr

1 will give an algebraic characterization of
the category Chb3+1 = Chb3+1

1 of 4-dimensional relative 2-handlebody cobordisms, in
the sense of Kerler ([35]).

The proof is based on the factorization of the category equivalence ⇥n : Sc
n ! Kc

n

defined in Section 3.3, as a composition �n �  n, where for n � 4 the functor
 n : Sc

n ! Hr,c
n is shown to be full. This implies that both  n and �n are cat-

egory equivalences. In particular,  n gives an algebraic interpretation of the sim-
ple branched covering representation of 4-dimensional relative 2-handlebody cobor-
disms.

Hr
n will be defined as the strict monoidal braided category freely generated by a

groupoid Hopf algebra for the groupoid Gn = {1, . . . , n}2, thought with its natural
composition given by (i, j)(j, k) = (i, k) for any 1  i, j, k  n.

Before going on, let us see how this groupoid structure of Gn fits into the picture.
As it has been established in [35, 24], I(1,1) 2 ObjK1 is a braided Hopf algebra
object with the comultiplication morphism �(1,1) described in Section 2.3. Actually,
by Proposition 2.3.3, �(i,j) : I(i,j) ! I(i,j) ⇧ I(i,j) makes any I(i,j) 2 ObjKn into a
coalgebra object. From the topological point of view, �(i,j) represents a single 1-
handle along which run the attaching maps of three 2-handles. The dual notion of
multiplication morphism (see below) corresponds to a 2-handle which runs along
exactly three 1-handles. Now, while in K1 one can always attach such a 2-handle
along any given three 1-handles (since they are all attached on the same 0-handle),
the same is not true in Kn. Here, to be able to close the loop of the attaching sphere,
the indices of the 1-handles need to be in the order (i, j), (j, k) and (i, k). Then,
the algebraic structure of Kn involves multiplication morphisms m(i,j),(i0,j0) : I(i,j) ⇧
I(i0,j0) ! I(i00,j00) defined only for i0 = j, i00 = i and j00 = j0, in other words when (i, j)
and (i0, j0) are composable and (i, j)(i0, j0) = (i00, j00) in the groupoid Gn. Moreover,
the morphisms ⌘i : 6O ! I(i,i), each given by a 2-handle that cancels against the
1-handle represented by I(i,i), act as units for the multiplication. Therefore, in Hr

n

we will have a family of objects labeled by Gn and a family of multiplication and
unit morphisms between them, which reflects the groupoid structure of Gn.

Actually, Hr
n will be introduced as a specialization of the more general notion

of universal groupoid ribbon Hopf algebra Hr(G), with G being an arbitrary finite
groupoid. Disregarding the ribbon structure, the notion of groupoid braided Hopf
algebra H(G) extends the one of group braided Hopf algebra, used in [73, 72] to
define TQFT invariants of regular (unbranched) coverings of three manifolds, just
because any group can be considered as a groupoid with a single object. The study
the algebras H(G) and Hr(G) for an arbitrary groupoid G does not bring to any ad-
ditional technical di�culties with respect to the one of Hr

n, allowing on the contrary
somewhat simpler notations.

The total list of axioms of a groupoid ribbon Hopf algebra is quite long (11
elementary morphisms and 34 relations between them). Moreover, these axioms have
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many important consequences, to which we will refer as properties of the algebra.
Of course, a given property usually depends only on a small subset of axioms. So,
in order to make more clear the logical structure of such implications, we decided to
introduce the axioms in four steps. We start by presenting the axioms of a braided
Hopf algebra and showing that the corresponding universal category H(G) carries an
autonomous structure. Then, we require the unimodularity condition, which leads
to a tortile category Hu(G). Here, we require the existence of ribbon morphisms
satisfying Kerler’s axioms in [35] with the exception of the self-duality condition
(we remind that we are looking for an algebra which describes 4-dimensional 2-
handlebodies; self-duality will be considered later in Chapter 5, where we study
the category of framed 3-dimensional cobordisms). The universal unimodular Hopf
algebra with such ribbon morphisms will be called a pre-ribbon Hopf algebra and will
be denoted by Hu

v (G). Finally, the universal ribbon Hopf algebra Hr(G) is obtained
by adding two new axioms which relate the ribbon morphism with the coalgebraic
and braided structures.

The diagrammatic language, developed and used in the literature (see for exam-
ple [24, 35]), will be our main tool in representing the morphisms in the algebraic
categories and in the study of the functors between the geometric and the algebraic
categories. The next sections contain widespread references to the axioms and prop-
erties of the universal ribbon Hopf algebra. In order to simplify the search of such
references, we assign a compact name (a letter and a number) to each axiom and
property and collect all the corresponding diagrams in few tables.

4.1. The universal groupoid Hopf algebras H(G) and Hu(G)

Let G be a groupoid, that is a small category whose morphisms are all invertible.
We will denote by G also the set of the morphisms of G, endowed with the partial
binary operation given by the composition, for which we adopt the multiplicative
notation from left to right. The identity of i 2 ObjG will be denoted by 1i 2 G,
while the inverse of g 2 G will be denoted by g 2 G. For i, j 2 ObjG, we denote by
G(i, j) ⇢ G the subset of morphisms from i to j. Consequently, if g 2 G(i, j) and
h 2 G(j, k) then gh 2 G(i, k). In particular, gg = 1i and gg = 1j, and sometimes the
identity morphisms will be represented in this way.

A groupoid is called connected if G(i, j) is non-empty for any i, j 2 ObjG. Given
two groupoids G ⇢ G0, we say that G is full in G0 if G is a full subcategory of G0, i.e.
G(i, j) = G0(i, j) for all i, j 2 ObjG. Moreover, given k 2 ObjG, we denote by G\k

the full subgroupoid of G with ObjG\k = ObjG � {k}

Now, we start with the definition of the notion of Hopf G-algebra in a braided
monoidal category C. This involves a family H = {Hg}g2G of objects of C and certain
families of morphisms indexed by (possibly pairs of) such objects.

Here and in the sequel, we will write g instead of Hg in the subscripts of the
notation for morphisms of C. For example, we will use the notations idg = idHg

and �g,h = �Hg,Hh
. Moreover, based on the MacLane’s coherence result for monoidal

categories (p. 161 in [45]), we will omit the associativity morphisms since they can
be filled in a unique way.
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Definition 4.1.1. Given a groupoid G and a braided monoidal category C, a
Hopf G-algebra in C is a family of objects H = {Hg}g2G in C, equipped with the
families of morphisms in C described below.

A comultiplication � = {�g : Hg ! Hg ⇧Hg}g2G, such that for any g 2 G:

(�g ⇧ idg) ��g = (idg ⇧�g) ��g; (a1)

a counit " = {"g : Hg ! 1}g2G, such that for any g 2 G:

("g ⇧ idg) ��g = idg = (idg ⇧ "g) ��g; (a2-2 0)

a multiplication m = {mg,h : Hg ⇧ Hh ! Hgh}g,h,gh2G (notice that mg,h is defined
only when g and h are composable in G), such that for any f, g, h, fgh 2 G:

mfg,h � (mf,g ⇧ idh) = mf,gh � (idf ⇧mg,h), (a3)

(mg,h ⇧mg,h) � (idg ⇧ �g,h ⇧ idh) � (�g ⇧�h) = �gh �mg,h, (a5)

"gh �mg,h = "g ⇧ "h; (a6)

a unit ⌘ = {⌘i : 1 ! H1i}i2ObjG, such that for any g 2 G(i, j):

mg,1j � (idg ⇧ ⌘j) = idg = m1i,g � (⌘i ⇧ idg), (a4-4 0)

�1i � ⌘i = ⌘i ⇧ ⌘i, (a7)

"1i � ⌘i = id1; (a8)

an antipode S = {Sg : Hg ! Hg}g2G and its inverse S = {Sg : Hg ! Hg}g2G, such
that for any g 2 G(i, j):

mg,g � (Sg ⇧ idg) ��g = ⌘1j � "g, (s1)

mg,g � (idg ⇧ Sg) ��g = ⌘1i � "g, (s1 0)

Sg � Sg = Sg � Sg = idg. (s2-2 0)

We observe that an ordinary braided Hopf algebra in C is a Hopf G1-algebra,
where G1 is the trivial groupoid with a single object and a single morphism. In
particular, H1i is a braided Hopf algebra in C for any i 2 ObjG.

Definition 4.1.2. Let C be a braided monoidal category and H = {Hg}g2G be
a Hopf G-algebra in C. By a categorical left (resp. right) cointegral of H we mean a
family l = {li : H1i ! 1}i2ObjG of morphisms in C, such that for any i 2 ObjG

(id1i ⇧ li) ��1i = ⌘i � li : H1i ! H1i

(resp. (li ⇧ id1i) ��1i = ⌘i � li : H1i ! H1i).
(i1-1 0)

On the other hand, by categorical right (resp. left) integral of H we mean a family
L = {Lg : 1 ! Hg}g2G of morphisms in C, such that if g, h, gh 2 G then

mg,h � (Lg ⇧ idh) = Lgh � "h : Hh ! Hgh

(resp. mg,h � (idg ⇧ Lh) = Lgh � "h : Hg ! Hgh).
(i2-2 0)

If l (resp. L) is both right and left categorical cointegral (integral) of H, we call it
simply a cointegral (integral) of H.
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Axioms of the universal braided Hopf algebra H(G)

= =

==

=

= =

=∆g Sg

Sgηi

γg,h

γg,h Lg

li

=mg,h

gh

g h

g

1i

g h

h g

g h

h g

gg

g g

g

g g

1i

=εg

g

Elementary diagrams

Braid axioms

Antipode axioms

Integral axioms

D

D′ D

D′

(b1)

(b4 ′)

(b3)

D

D

(b4)

(s1) (s1 ′)

g g g gg

g g g1j 1j

g g

1i 1i

(s2) (s2 ′)

O
(i1)

1i 1i

1i 1i h h

gh gh
(i2) (i3)

(a7)(a6)

hg hg

1i 1i 1i 1i

O
(a5) (a8)

gh gh

g h

gh gh

g h

Bialgebra axioms

(a1) (a2 ′)

(a3)

(a2)

(a4 ′)(a4)

g g g

g

g g g

g

hf g

fgh

hf g

g gg

ggg

g g g

g g g

fgh

D

D

(i3S)

(b2)

Table 4.1.1.
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Definition 4.1.3. Given a groupoid G, the universal Hopf G-algebra H(G) is
the strict braided monoidal category freely generated by a Hopf G-algebra H =
{Hg}g2G with a left cointegral l and a right integral L, modulo the following addi-
tional relations for any i 2 ObjG

li � L1i = id1 = li � S1i � L1i . (i3-3S)

According to Definition 1.5.10, ObjH(G) is the free monoid ⇧H = [1m=0H
m

generated by H = {Hg}g2G and consisting of all (possibly empty) finite sequences
(that is products) of elementary objects. We will use the notation

H⇡ = Hg1⇧ . . . ⇧Hgm

for the sequence corresponding to ⇡ = (g1, . . . , gm) 2 ⇧G, in such a way that H6O is
the unit object and H⇡ ⇧H⇡0 = H⇡⇧⇡0 for any ⇡,⇡0 2 ⇧G.

Extending the notational convention made above, we will write ⇡ instead of H⇡

in the subscripts of the notation for morphisms of H(G). For example, we will use
the notations id⇡ = idH⇡ , �⇡,⇡0 = �H⇡,H⇡0 , �⇡,⇡0 = �H⇡,H⇡0 for any ⇡,⇡0 2 ⇧G.

On the other hand, MorH(G) consists of all the compositions of products of
identities and one of the elementary morphisms �g,h, �g,h,�g, "g,mg,h, ⌘i, Sg, Sg, Lg, li
as in Definition 4.1.1, modulo the defining axioms for a braided structure and for a
Hopf G-algebra with integrals listed in Definitions 4.1.1 and 4.1.2 (cf. Table 4.1.1).

Moreover, H(G) satisfies the following universal property: if C is any braided
monoidal category with a Hopf G-algebra H 0 = {H 0

g}g2G in it, and H 0 has a left
cointegral and a right integral related by conditions (i3-3S), then there exists a
braided monoidal functor H(G) ! C sending Hg to H 0

g.
Analogously to [35], H(G) can be described as a category of planar diagrams in

[0, 1]⇥[0, 1]. The objects of H(G) are sequences of points in [0, 1] labeled by elements
in G, and the morphisms are iterated products and compositions of the elementary
diagrams presented in Table 4.1.1, modulo the relations presented in the same figure
and plane isotopies which preserve the y-coordinate. We remind that the composition
of diagrams D2 �D1 is obtained by stacking D2 on the top of D1 and then rescaling,
while the product D1 ⇧D2 is given by the horizontal juxtaposition of D1 and D2 and
rescaling.

The plane diagrams and the relations between them are going to be our main
tool. Observe that the diagrams we use consist in projections of embedded graphs
in R3 with uni-, bi- and tri-valent vertices. The vertices correspond to the defining
morphisms in the algebra, and we will call them with the name of the corresponding
morphism. For example the bi-valent vertices (which have one incoming and one
outgoing edge) will be called antipode vertices. Except the antipode ones, the rest
of the vertices are represented by triangles that point up (positively polarized) or
point down (negatively polarized). The uni-valent vertices are divided in unit ver-
tices (corresponding to ⌘ and ") and integral vertices (corresponding to l and ⇤),
while the positively (resp. negatively) polarized tri-valent vertices will be called mul-
tiplication (resp. comultiplication) vertices. Observe that the choice of polarization
of the vertices is not arbitrary. Indeed, as we will see in Section 4.3, in the cate-
gory of generalized Kirby tangles Kn the univalent vertices with same polarization
correspond to morphisms with the same handle structure (upside down).

– 124 –



Most of our proofs consist in showing that some morphisms in the universal
algebra are equivalent, meaning that the graph diagram of one of them can be
obtained from the graph diagram of the other by applying a sequence of the defin-
ing relations (moves) of the algebra axioms. We will outline the main steps in this
procedure by drawing in sequence some intermediate diagrams, and for each step we
will indicate in the corresponding order, the main moves needed to transform the
diagram on the left into the one on the right. Actually, some steps can be under-
stood more easily by starting from the diagram on the right and reading the moves
in the reverse order. Notice, that the moves represent equivalences of diagrams and
we use the same notation for them and their inverses. In the captions of the figures
the reader will find (in square brackets) the reference to the pages where those moves
are defined. As an example, the reader can see the proof of Proposition 4.1.4, where
we have added some additional comments in order to make clearer the interpretation
of the figures.

We now proceed with the study of the properties of the category H(G) listed in
Table 4.1.2. Such properties are divided in two sets. The first one generalizes to the
case of a groupoid Hopf algebra the well-known properties of the antipode (see [35]
and [73] for the case of braided and group Hopf algebras).

Proposition 4.1.4. The following properties of the antipode in H(G), hold
for any g, h 2 G such that gh is defined, and for any i 2 G:

Properties of the universal braided Hopf algebra H(G)

Existence and properties of coform and form

Properties of the antipode

(i1 ′) (i2 ′)

gg1i1i

1i1i gh gh

(s3) (s4) (s6)(s5)

g g gg

gggg hg hg

g h g h

1i 1i

Λg λg= =

g g g g

defdef

g g g g

ggg g

gg

g g g

ggg

g g

g

(f1) (f2)

(f3) (f4)(f3 ′) (f4 ′)

Table 4.1.2.
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�g � Sg = (Sg ⇧ Sg) � �g,g ��g : Hg ! Hg ⇧Hg, (s3)

Sgh �mg,h = mh,g � (Sh ⇧ Sg) � �g,h : Hg ⇧Hh ! Hhg, (s4)

"g � Sg = "g, (s5)

S1i � ⌘i = ⌘i. (s6)

Moreover, if l = {lj : H1j ! 1}j2ObjG and L = {Lg : 1 ! Hg}g2G are respectively a
left cointegral and a right integral of H, then:

l � S = {lj � S1j : H1j ! 1}j2ObjG is a right cointegral of H, (i1 0)

S � L = {Sg � Lg : 1 ! Hg}g2G is a left integral of H. (i2 0)

Proof. (s3) is proved in Figure 4.1.3. In the first step we obtain the diagram on
the left from the one on the right by applying in the order moves (a1-3), move (s1)
and (a2-4 0). To be precise, before applying (s1) and (a4 0), we also use the braid
axioms presented in Table 4.1.1, but this in general will not be indicated.

g g g g g g g g g g

ggggg

(a2)

(a1)
(a3)

(a4 ′)
(s1)

(a2) (a5)

(a1)
(a3)

(a4 ′)
(s1)

(a7)

(a4)
(a4)

(a2 ′)

(s1 ′)

Figure 4.1.3. Proof of (s3) [a-s/123]

(a2 ′)
(s2 ′) (s3) (a2)

(s3)
(s2 ′)

(s6)
(i1)

g ggg 1i1i

1i1i 1i

1i

Figure 4.1.4. Proof of (s5) and (i1 0) [a-i/123, s/123-125]

Property (s5) is proved in the left side of Figure 4.1.4. Then (s4) and (s6) are
obtained by rotating the diagrams in Figures 4.1.3 and 4.1.4 upside down. Eventu-
ally, using (s3) and (s6) one obtains (i1 0) as shown in the right side of Figure 4.1.4
and (i2 0) by rotating that figure. ⇤

The second set of properties in Table 4.1.2 states the existence of an autonomous
structure on H(G) and describes the relation between such structure and the alge-
braic one. The proposition below proves properties (f1), (f2) and (f3-3 0), extending
the result in Lemma 7 of [35] to possibly non-unimodular categories.

Note that in the diagrams representing the morphisms of H(G), it is appropriate
to use for the coform and the form the notations (f1) and (f2), presented in Table
4.1.2. In fact, the relations (f3-3 0) reduce to the standard “pulling the string”, which
together with the braid axioms in Table 4.1.1 realize regular isotopy of strings.
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Proposition 4.1.5. Given a groupoid G, the universal Hopf G-algebra H(G) is
an autonomous category, with H ⇤

⇡ = H⇡⇤ for every ⇡ 2 ⇧G, where ⇡⇤ is the sequence
obtained by reversing the order of �. In particular H ⇤

g = Hg for g 2 G, while coform
and form are defined by

⇤Hg = ⇤g = �g � Lg , (f1)

�Hg = �g = lgg �mg,g � (idg ⇧ Sg) , (f2)

for any g 2 G, and by the following recursive formulas for ⇡ = ⇡0 ⇧ ⇡00 2 ⇧G (note
that the definition is well-posed, giving equivalent results for di↵erent decomposi-
tions ⇡ = ⇡0 ⇧ ⇡00)

⇤H⇡ = ⇤⇡ = (id(⇡00)⇤ ⇧ ⇤⇡0 ⇧ id⇡00) � ⇤⇡00 ,

�H⇡ = �⇡ = �⇡0 � (id⇡0 ⇧ �⇡00 ⇧ id(⇡0)⇤) .

Hence, properties (f3-3 0) in Table 4.1.2 hold in H(G).

Proof. Figure 4.1.5 shows that ⇤g and �g satisfy the relations in the Definition
1.5.7, that is the properties (f3-3 0). Then, it su�ces to observe that such relations
propagate to ⇤⇡ and �⇡ for any ⇡ 2 G, by a simple induction on the length of ⇡. ⇤

g g g g g

g g g g g

g

g

(s3)(a5)
(s4)
(s3)

(a1)
(a3)
(s1)

(a2 ′)
(i2)

(a4 ′)
(i1 ′) (i3 ′)

g g g g g

g g g g g

(a5)
(a2)
(i2)

(a1)
(a3)
(s1 ′)

(a4 ′)
(i1) (i3)

g

g

(f1-2)

(f1-2)

g

g

Figure 4.1.5. Proof of (f3-3 0) [a/123, i-s/123-125]

The remaining two properties (f4-4 0) in Table 4.1.2 can be expressed in terms
of the right and left “rotation” maps:

rotr : MorH(G)(Hh0⇧⇡0 , H⇡1⇧h1) ! MorH(G)(H⇡0⇧h1 , Hh0⇧⇡1),

rotl : MorH(G)(H⇡0⇧h0 , Hh1⇧⇡1) ! MorH(G)(Hh1⇧⇡0 , H⇡1⇧h0),

defined for any h0, h1 2 G and ⇡0,⇡1 2 ⇧G by the identities (see Figure 4.1.6):

rotr(F ) = (idh0⇧⇡1⇧ �h1) � (idh0⇧ F ⇧ idh1) � (⇤h0⇧ id⇡0⇧h1),

rotl(F ) = (�h1⇧ id⇡1⇧h0) � (idh1⇧ F ⇧ idh0) � (idh1⇧⇡0⇧ ⇤h0).
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F F

rotr
F F

rotl

π1

π0
h0

h1
π1h0

π0
h1

π1h1

π0
h0 π0

h1

π1 h0

Figure 4.1.6. The rotation maps rotr and rotl

Proposition 4.1.5 implies that the maps rotr and rotl are inverses to each other.
Then properties (f4-4 0) in Table 4.1.2 state that the comultiplication vertices are
invariant under such rotation maps. We will see later that the same is not true for
the multiplication vertices. The reason for which we study the action of the rotation
maps to these types of vertices will become clear in Section 4.6, where the functors
 n will relate them to moves (I5-6) and (R1) in Figures 3.2.1 and 3.1.2 in the
category of labeled ribbon surface tangles.

Proposition 4.1.6. In H(G), for any g 2 G we have

rotr(�g) = rotl(�g) = �g : Hg ! Hg ⇧Hg, (f4-4 0)

Proof. (f4) is shown in Figure 4.1.7. (f4 0) is analogous and left to the reader. ⇤

(a1)
(f3)

g g

g g g gg g

g

(f1-2) (f1-2)

gg

g

Figure 4.1.7. Proof of (f4) [a/123, f/125]

Definition 4.1.7. A Hopf G-algebra in a braided monoidal category is called
unimodular if it has S-invariant (2-sided) integral and cointegral, that is:

Sg � Lg = Lg, (i4)

lg � Sg = lg. (i5)

Then, given a groupoid G, the universal unimodular Hopf G-algebra Hu(G) is the
quotient of H(G) modulo the relations (i4) and (i5) above.

The diagrammatic presentation of the relations (i4) and (i5) above can be found
in Table 4.1.8. Moreover, as it is indicated there, in Hu(G) we change the notation
for the integral and cointegral vertices by connecting the edge to the middle point
of the base of the triangle, to reflect that the corresponding integral is two-sided.
In the same Table 4.1.8, we also rewrite the integral axioms (i1-3) (notice that
here (i3S) is redundant) and the properties (i1 0) and (i2 0), as well as the definitions
(f1-2) of form and coform, according to the new notation.

Adding the unimodularity condition to the algebra axioms brings to the sym-
metry of the structure with respect to the rotation around a vertical axis, which
inverts the labels in G and reverse the products of objects and morphisms. In fact,
axioms (i4-5) make properties (i1 0-2 0) symmetric to axioms (i1-2), completing the
preexisting symmetry of the other axioms. This is the content of next proposition.
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Duality of uni-valent vertices with the same polarization

properties of coform and form

Properties of the universal unimodular braided Hopf algebra Hu(G)

1i 1i 1i g g g

g g g 1i 1i 1i

ggg

g g g g g

g g

g g

g g

Other

Axioms of the universal unimodular braided Hopf algebra Hu(G)
(in addition to the axioms of H(G))

(i4)

1i1i1i

ggg

def def

(i5)

O
(i1)

1i 1i

1i 1i h h

gh gh
(i2) (i3)

(i1 ′) (i2 ′)
1i

1i 1i

1i gh

g g

gh

Unimodularity axioms

Rewriting the integral axioms

Rewriting the properties (i1 ′) and (i2 ′)

(f5) (f5 ′) (f6) (f7)

Λg λg= =

g g g g

defdef

g g g g

(f1) (f2)

of coform and formRewriting the definition

(f8) (f8 ′)

hg

gh

g h

ghgh

g h

Table 4.1.8.
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Proposition 4.1.8. Given a groupoid G, there is an involutive antimonoidal
category equivalence sym : Hu(G) ! Hu(G), uniquely determined by the following
identities, for any g, h 2 G (composable in the case of mg,h), any H⇡, H⇡0 2
ObjHu(G) and any F, F 0 2 MorHu(G):

sym(Hg) = Hg , sym(�g,h) = �h,g , sym(�g,h) = �h,g ,

sym(�g) = �g , sym("g) = "g , sym(mg,h) = mh,g , sym(⌘i) = ⌘i ,

sym(Sg) = Sg , sym(Sg) = Sg , sym(li) = li , sym(Lg) = Lg ,

sym(H⇡ ⇧H⇡0) = sym(H⇡0) ⇧ sym(H⇡) and sym(F ⇧ F 0) = sym(F 0) ⇧ sym(F ) .

Proof. The universal property of Hu(G) allows us to define the wanted functor
by propagating the identities in the statement over compositions, once we show that
this preserves the axioms of Hu(G). This is indeed the case, being all the axioms
invariant or interchanged with their primed versions (possibly up to inversion). That
such functor is an involution and hence a category equivalence, follows from its
involutive action on the elementary morphisms and products. ⇤

Some further properties of Hu(G) are listed in Table 4.1.8. First of all, using the
integral axioms (i1) to (i5) and the bialgebra axiom (a8) in Table 4.1.1, it is easy
to see that the uni-valent vertices of the same polarization are dual to each other
with respect to the form/coform. Moreover, unimodularity leads to the existence of
a tortile structure (cf. Definition 1.5.8) with some additional properties, as stated
by the next proposition, which is a version of Lemma 8 in [35].

Proposition 4.1.9. Given a groupoid G, the universal unimodular Hopf G-
algebra Hu(G) is a tortile category, with the twist ✓H⇡ defined for any ⇡ 2 ⇧G by

✓H⇡ = ✓⇡ = (�⇡⇤⇧ id⇡) � (id⇡⇤⇧ �⇡,⇡) � (⇤⇡ ⇧ id⇡) .

Moreover, the following properties (cf. Table 4.1.8) hold for any g 2 G:

✓g = Sg � Sg = ✓ ⇤g , (f5-5 0)

(idg ⇧ Sg) � ⇤g = (Sg ⇧ idg) � ⇤g , (f6)

�g � (idg ⇧ Sg) = �g � (Sg ⇧ idg) . (f7)

Proof. Observe that the definition of ✓⇡ guarantees that ✓1 = id1 and that the
identity ✓⇡⇧⇡0 = �⇡0,⇡ �(✓⇡0 ⇧✓⇡)��⇡,⇡0 holds, up to isotopy moves, for any ⇡,⇡0 2 ⇧G.
Therefore, in order to see that ✓ makes Hu(G) into a tortile category, it is enough
to show its naturality and that ✓⇡⇤ = ✓ ⇤⇡ for any object H⇡ in Hu(G).

g

g

g g g

g g g

(f1)
(f2)

(f1)
(f2)(i5)

(s4)

Figure 4.1.9. Proof of (f5) [f-i/129, s/125]
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g g g g g g g g g g g g

(f1)
(i4)
(s3)

(s2)
(f1) (f5)

(s2 ′)

Figure 4.1.10. Proof of (f6) [f-i/129, s/123-125]

We will first prove the last identity. Through an induction argument, one can
easily see that the general case follows from (f5-5 0). Figure 4.1.9 shows that ✓g,
represented by the diagram on the left side of (f5), is equivalent to Sg � Sg, which
proves (f5). Then also ✓ ⇤g , represented up to isotopy moves by the diagram on the
right side of (f5 0), is equivalent to Sg �Sg, being properties (f5) and (f5 0) symmetric
to each other under the category equivalence in Proposition 4.1.8. Moreover, in
Figure 4.1.10 we see that (f5) implies (f6), while (f7) immediately follows from (f6)
and the properties (f3-3 0) of the form and coform presented in Table 4.1.2.

It is left to prove the naturality of ✓, i.e. that ✓⇡1 �F = F �✓⇡0 for any morphism
F : H⇡0 ! H⇡1 in Hu(G). Since any morphism in Hu(G) is a composition of expan-
sions (i.e. products with identities) of elementary morphisms, by using the identity
✓⇡⇧⇡0 = �⇡0,⇡ � (✓⇡0 ⇧ ✓⇡) � �⇡,⇡0 and the isotopy moves, we can reduce ourselves to the
case when F is any elementary morphism. This case easily follows from (f5) and the
properties (s3-6) in Table 4.1.2 and (i4-5) in Table 4.1.8 ⇤

As we said above, under the right and left rotation maps the multiplication
vertices do not remain invariant, but change as described by properties (f8-8 0) in
Figure 4.1.8, which are proved in the next proposition. We observe that (f8) still
holds in the non-unimodular case (in H(G)), while (f8 0) needs the unimodularity
axioms.

Proposition 4.1.10. In Hu(G), if g, h, gh 2 G (g and h are composable) then

rotr(mg,h) = Sg �mh,hg � (idh ⇧ Sgh) : Hh ⇧Hgh ! Hg , (f8)

rotl(mg,h) = Sh �mhg,g � (Sgh ⇧ idg) : Hh ⇧Hgh ! Hg . (f8 0)

Proof. See Figure 4.1.11 for property (f8). Then property (f8 0) follows by sym-
metry, according to Proposition 4.1.8. ⇤

(s2)
(a3)

(s2)

hg

ghgh

g h

gh gh gh

g gh h g h

(f1-2) (f1-2) (f3)
(s2)

Figure 4.1.11. Proof of (f8) [a/123, f/129, s/123]

4.2. The universal groupoid ribbon Hopf algebra Hr(G)

In this section we want to provide the universal unimodular Hopf G-algebra
Hu(G) with a ribbon structure. The first step in this direction is to postulate the
existence of a family of ribbon morphisms, in the sense of the following definition.
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Definition 4.2.1. Given a unimodular Hopf G-algebra H in a braided monoid-
al category C, a family of ribbon morphisms of H is a set v = {vg : Hg ! Hg}g2G of
invertible morphisms in C, such that for any g, h, gh 2 G:

Sg � vg = vg � Sg , (r3)

"g � vg = "g , (r4)

mg,h � (vg ⇧ idh) = vgh �mg,h , (r5)

and the family of morphisms � = {�i,j : 1 ! H1i ⇧H1j}i,j2ObjG, defined by

�i,j =

⇢
(v�1

1i
⇧ (v�1

1i
� S1i)) ��1i � v1i � ⌘i if i = j,

⌘i ⇧ ⌘j if i 6= j,
(r6)

satisfies the following identity for any i 2 ObjG:

(�1i ⇧ id1i) � �i,i = (id1i ⇧ id1i ⇧m1i,1i) � (id1i ⇧ �i,i ⇧ id1i) � �i,i. (r7)

The axioms above are presented in Table 4.2.1, where we use thinner lines to draw
the optional part in the diagram on the righthand side of (r6). Observe that when
i = j, the thicker units can be deleted by axioms (a4-4 0) in Table 4.1.1, and therefore
�i,i is given just by the thinner diagram.

Axioms for the unimodular braided Hopf algebra Hu
v(G)

(in addition to the axioms of Hu(G))

Axioms for the ribbon morphisms

Additional elementary diagrams

0

g

g

g

g

(r1)
g

g

g

g

(r2)
n

m

n
+m

g

g

g

g

(r3)

n

n

n

n

g g

(r4)

n

g h hg

ghgh

(r5)
1i1i 1i 1i 1i1i

(r7)

vn
g σi,j= =

g

n

g

1i

def

(r6)
1j

−1
1

−1

1i 1j

jif i =

Table 4.2.1.

Usually in the literature (see Section 4 in [35] for the case of a trivial groupoid),
instead of ribbon morphisms are introduced ribbon elements, as the ones defined
below in the general case of a groupoid Hopf algebra.
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Definition 4.2.2. Given a unimodular Hopf G-algebra H in a braided monoid-
al category C, a family of ribbon elements of H consists of two sets V = {Vi : 1 !
H1i}i2ObjG and V = {Vi : 1 ! H1i}i2ObjG of morphisms in C, such that for any
i 2 ObjG and g 2 G(i, j):

S1i � Vi = Vi and "1i � Vi = 1 ,

m1i,1i � (Vi ⇧ Vi) = ⌘i and m1i,g � (Vi ⇧ idg) = mg,1j � (idg ⇧ Vj) ,

and the family of morphisms � = {�i,j : 1 ! H1i ⇧H1j}i,j2ObjG, defined by

�i,j =

⇢
(m1i,1i ⇧m1i,1i) � (Vi ⇧ id1i ⇧ S1i ⇧ Vi) ��1i � Vi if i = j,

⌘i ⇧ ⌘j if i 6= j,

satisfies the following identity:

(�1i ⇧ id1i) � �i,i = (id1i ⇧ id1i ⇧m1i,1i) � (id1i ⇧ �i,i ⇧ id1i) � �i,i.

Actually, next proposition states the equivalence of the two approaches. More-
over, the axioms for ribbon elements can be considered conceptually simpler, in sense
that when H is the braiding of an ordinary Hopf algebra H the ribbon element is
a special central element in H (cf. [73]). Nevertheless, as we will discuss below, the
approach based on ribbon morphisms seems to be preferable in the present context.

Proposition 4.2.3. For any unimodular Hopf G-algebra H in a braided mon-
oidal category C, there is a bijective correspondence between the set of families of
ribbon morphisms and the set of families of ribbon elements of H, given by the map
v 7! {V, V } defined by Vi = v1i � ⌘i and Vi = v�1

1i
� ⌘i for every i 2 ObjG, whose

inverse {V, V } 7! v is defined by vg = m1i,g � (Vi ⇧ idg) for every g 2 G(i, j).

Proof. The only non-trivial point is to prove the identity m1i,g � (Vi ⇧ idg) =
mg,1j � (idg ⇧ Vj), when Vi = v1i � ⌘i, Vj = v1j � ⌘j and g 2 G(i, j). This requires the
property (r5 0), which can be obtained from (r5) by using (s4) (see below). The rest
is straightforward and it is left to the reader. ⇤

As we will see in the next section, the image of the ribbon morphisms/elements
in the category Kn are twists in the attaching map of the corresponding 2-handles.
In particular, using ribbon elements, k full twists along the framing of a 2-handle
are represented by m1i � (id1i ⇧m1i) � . . . � (id1i ⇧ . . . ⇧ id1i ⇧m1i) �V ⇧k

i , and the corre-
sponding graph diagram is quite heavy. On the other hand, using ribbon morphisms,
the same k full twists are represented by vk

1i
� ⌘i, which seems to us much simpler.

This is the main reason why we decided to follow this last approach.

Definition 4.2.4. Given a groupoid G, we define the universal pre-ribbon Hopf
G-algebra Hu

v (G) to be the braided strict monoidal category freely generated by a
unimodular Hopf G-algebra H with a family of ribbon morphisms v = {vg : Hg !
Hg}g2G. Then,Hu

v (G) has the same objects asHu(G), while its elementary morphisms
are those of Hu(G) with the addition of the diagrammatic representations of vn and
�i,j shown in Table 4.2.1. Moreover, the defining relations of Hu

v (G) are the axioms
of Hu(G) (where now in the braid axioms in Table 4.1.1, D can be also a ribbon
morphism) plus the axioms for the ribbon morphisms presented in Table 4.2.1.
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The category Hu
v (G) has many important properties presented in Table 4.2.2.

Before proving them, we make here few observations about the basic relations of the
pre-ribbon algebra and their diagrammatic representation.

(a) In the diagrams we represent vn
g by an edge with weight n 2 Z. In particular,

(r1) states that an edge with weight 0 is the same as an edge without any weight.

(b) Axiom (r4) says that the weight of an edge attached to a counit vertex can be
changed arbitrarily. By property (p1), the same is true for the integral vertex.

(c) Axiom (r5) and property (r5 0) imply that the weight of an edge attached to a
multiplication vertex can be moved to any other edge attached to that vertex.

Properties of the unimodular braided Hopf algebra Hu
v(G)

Extended isotopy moves

Relations symmetric to (r5) and (r7)

Other relations

n n

g g g g

nn

g g g g

1i 1j 1i 1j 1i 1j

n

g g 1i 1i 1i 1i 1j 1i 1j

(p3)

(p6)

(p1) (p2 ′)

(p4) (p5)

(p2)

g h

g h

g gh h

g gh h 1i 1i

−11

1

g

g

(p8) (p8 ′)

g

g

(p7) (p7 ′)
−2 2

(f9) (f10) (f11) ′)(f11

(p9) (p9 ′)

g

g g g g g g

g g

11 111

g h hg

ghgh

(r5 ′)n

n

(r7 ′)
1i1i 1i1i1i1i

g

g g

gg

g g

g

Table 4.2.2.
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(d) We remind that, given two Hopf algebras over the trivial groupoid (A,mA, ⌘A,
�A, "A, SA) and (B,mB, ⌘B,�B, "B, SB) in the same braided monoidal category
C, a morphism �A,B : 1 ! A ⇧ B is called a Hopf copairing if the following
conditions are satisfied:

(�A ⇧ idB) � �A,B = (idA⇧A ⇧mB) � (idA ⇧ �A,B ⇧ idB) � �A,B,

(idA ⇧�B) � �A,B = (mA ⇧ idB⇧B) � (idA ⇧ �A,B ⇧ idB) � �A,B,

("A ⇧ idB) � �A,B = ⌘B and (idA ⇧ "B) � �A,B = ⌘A.

Moreover, the Hopf copairing �A,B is called trivial if �A,B = ⌘A ⇧ ⌘B. Therefore,
axioms (r6) and (r7) together with properties (r7 0) and (p2-2 0), imply that
�i,j : 1 ! H1i ⇧H1j is a Hopf pairing, and that such pairing is trivial for i 6= j.
For this reason we will refer to the morphisms �i,j’s as copairing morphisms or
simply copairings.

(e) Property (p3) tell us that the copairing is symmetric with respect to the rotation
around a vertical axis, while properties (r5 0) and (r7 0) are the symmetric version
of axioms (r5) and (r7). Hence, once those properties will be proved in Proposi-
tion 4.2.7, they will imply that the functor sym : Hu(G) ! Hu(G) of Proposition
4.1.8 induces an analogous symmetry functor sym : Hu

v (G) ! Hu
v (G), which fixes

the ribbon morphisms vg for g 2 G.

We now proceed with the proof of the properties of Hu
v (G) listed in Table 4.2.2,

beginning with those which follow directly from the definition (r6) of �i,j and the
axioms (r1-5), but do not depend on the copairing property of �i,j (axiom (r7)).

Lemma 4.2.5. Properties (r5 0), (f9), (f10), (f11-11 0), (p1), (p2-2 0), (p7-7 0)
and (p9) in Table 4.2.2, hold in Hu

v (G). Moreover, they can be proved without using
axiom (r7).

Proof. (r5 0) can be shown to be equivalent to (r5), by using the property (s4)
of the antipode (see Table 4.1.2). (f10) is a direct consequence of definition (f2) in
Table 4.1.2 and of the relations (r3) and (r5-5 0).

(f11-11 0) are trivial when i 6= j, due to the definition (r6) and the duality of
the corresponding univalent vertices in Table 4.1.2, while the proofs for i = j are
presented in Figure 4.2.3. Here, we first prove (f11 0) in the top line and then we
show how it implies (f11) up to isotopy moves in the bottom line.

1i 1i 1i 1i 1i 1i 1i 1i 1i 1i

1

−1 −1

1

−1 −1

(f5)
(s6)(s3)
(r3)(r6)

(r3)
(r6)

1i 1i1i 1i 1i 1i1i 1i 1i 1i

(f11 ′)

(s2 ′)

Figure 4.2.3. Proof of (f11-11 0) for i = j [f/129-134, r/132, s/125]
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gg

−2

−2

1
(r6)

(r5-5 ′) (a4)

(a8)

(s1 ′)

(r4)

g

g

g g g g g g g

g g g

11
1

11
(r6)

(r5-5 ′) (a5)
(s4)

(a4)
(r5 ′)

g

g

Figure 4.2.4. Proof of (p7) and (p9) [a/123, r/132-134, s/123]

g g g g g g

11

1

− 1

11

(f1) (p9) (p1)
(r5-5 ′)

g

1

g

2

(f11 ′)

(f5)
(s2 ′)

g gg

1
1

(p7)(a5)(a2)
(i2)

g

2

g

1

g

2

g

1

g

2

g

1

(s1 ′)
(a1-3)

(f1)

-4)(s2

g

2

Figure 4.2.5. Proof of (f9) [a/123, f/129-134, i/129, p/134, r/132-134, s/123-125]

(p1) can be derived from (r4), by using (r5) and the duality of the negative
uni-valent vertices in Table 4.1.2. (p2-2 0) immediately follow from the definition
(r6) of the copairing, the axiom (r2) and the relations (a2-2 0) and (s5-6) in Tables
4.1.1 and 4.1.2. (p7) and (p9) are proved in Figure 4.2.4. (p7 0) can be proved in a
completely analogous way as (p7). (f9) is proved in Figure 4.2.5. ⇤

Lemma 4.2.6. For every g 2 G(i, j) and h 2 G(j, k),

µg,h = (mg,1i⇧m1j ,h) � (idg ⇧ �i,j ⇧ idh) : Hg ⇧Hh ! Hg ⇧Hh

is an isomorphism in Hu
v (G), and

µ�1
g,h = (mg,1i⇧m1j ,h) � (idg ⇧ ((id1i⇧ S1j) � �i,j) ⇧ idh) : Hg ⇧Hh ! Hg ⇧Hh

is its inverse (see Figure 4.2.6). In other words, properties (p4-5) hold in Hu
v (G).

µg,h = µ−1
g,h =

g g

gg h h

h h

Figure 4.2.6. The isomorphisms µg,h and µ�1
g,h

Proof. Property (p4) is proved in Figure 4.2.7. The proof of (p5) in analogous,
using (s1) in place of (s1 0). ⇤
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g h

g h

g h g gh h

hg g gh h

(a3)
(r7)

(a3)
(s1 ′) a4( -4 ′)

(p2 ′)

Figure 4.2.7. Proof of (p4) [a-s/123, r/134]

Proposition 4.2.7. Given a groupoid G, all the relations in Table 4.2.2 are
satisfied in the universal pre-ribbon Hopf G-algebra Hu

v (G). Moreover, there is an
involutive antimonoidal category equivalence sym : Hu

v (G) ! Hu
v (G) uniquely deter-

mined by the identities in Proposition 4.1.8 and by sym(vg) = vg.

Proof. In the light of the previous lemmas, we are left to prove the relations
(r7 0), (p3), (p6), (p8-8 0) and (p9 0).

(r7 0) is derived from (r7) in Figure 4.2.8, by using the relation (f11 0), the braid
axioms and the properties of the antipode.

1i1i1i1i1i1i 1i1i1i 1i1i 1i

(f11 ′) (f11 ′)
(f11 ′)

(r7)
(s4)
(f5 ′)

(f5 ′)

(s2-2 ′)

(s2-2 ′)

Figure 4.2.8. Proof of (r7 0) [f/129-134, r/134 s/123-125]

To prove (p3), let us consider the morphism

sym(µ�1
g,h) = (mg,1i⇧m1j ,h) � (idg ⇧ ((S1i⇧ id1j) � �i,j) ⇧ idh) : Hg ⇧Hh ! Hg ⇧Hh,

where for the moment sym(µ�1
g,h) is just as a notation for the symmetric of µ�1

g,h, with
the antipode moved to the left side of �i,j. Then, by replacing (r7 0), (p2 0) and (s1 0)
in Figure 4.2.7 respectively with (r7), (p2) and (s1), we obtain that (p4) and (p5)
are still valid if µ�1

g,h is replaced by sym(µ�1
g,h). Hence sym(µ�1

g,h) and µ�1
g,h are equal,

being both two-sided inverses of µg,h. This gives (p3), by composing with ⌘g ⇧ ⌘h.
At this point, we are ready to prove that sym : Hu

v (G) ! Hu
v (G) defines an

involutive antimonoidal category equivalence. According to Proposition 4.1.8, it is
enough to check that it preserves the additional ribbon axioms. Indeed, property

1i

−1

1i

−1

1i

1

1i

1

−1

11

1i 1i

−11

1

−1

(a4 ′)
(r5) (a2)

(a4 ′)

(s6)

(s1 ′)
(a1-3)

(a5)
(s3)

(a4)
(i1 ′)

(i5)

(f7)
(f2)

(f10)

(r6)

(p3)

Figure 4.2.9. Proof of (p6) [a/123, f/129-134, i/129, p/134, r/132, s/123-125]
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g g

g

2

(r5)
(p7)

(p4)
(a4)

(a3)

g

g

g

2

Figure 4.2.10. Proof of (p8) [a/123, p/134, r/132]

(p3) implies that the copairing is symmetric, i.e. the antipode which appears in
its definition (r6) can be put on either side. Moreover, all ribbon axioms are left
invariant by sym with the exceptions of axioms (r5) and (r7), which are mapped to
properties (r5 0) and (r7 0).

Finally, (p6) and (p8) are proved in Figures 4.2.9 and 4.2.10 respectively, while
(p8 0) and (p9 0) follow from (p8) and (p9) by symmetry. ⇤

We observe that the morphisms in Hu
v (G) are represented by formal graph di-

agrams, which can be interpreted as plane projection of uni/tri-valent graphs em-
bedded in R3. Under this interpretation, some of the equivalence moves between
such diagrams correspond to graph isotopies in R3. We collect these moves in the
following definition.

Definition 4.2.8. Two diagrams representing morphisms in Hu
v (G), as well as

in its quotient Hr(G) we will define below, will be called isotopic, or obtainable from
each other through isotopy, if they are related by a sequence of moves (b1) to (b4 0)
in Table 4.1.1, (f3-3 0) in Table 4.1.2, (f5-5 0) and (f6-7) in Table 4.1.8, (f9), (f10)
and (f11-11 0) in Table 4.2.2.

An example of diagram isotopy is shown in Figure 4.2.11. The reader can check
that here only the braid axioms and moves (f11-11 0) are needed.

1i 1j 1i 1j 1i 1j

Figure 4.2.11. An example of diagram isotopy

Since the application of the isotopy moves will be frequent and quite intuitive,
we will usually omit to explicitly indicate them in the diagrammatic proofs.

As we already mentioned, the universal algebra Hu
v (G) for G the trivial groupoid

is the algebra Alg introduced by Kerler in [35], without the self-duality axiom, or
equivalently without the requirement that the copairing is non-degenerate. We do
not impose yet the self-duality, since for now we want to interpret the algebraic
structure of cobordisms of relative 4-dimensional 2-handlebodies. Self-duality will
be added only later in Chapter 5, when we will study the 3-dimensional boundaries
of such handlebodies.

The axioms of Hu
v (Gn) are clearly too weak for what we need. In fact, they

are compatible with the trivial choice vg = idg of the ribbon morphisms, which
brings to trivial copairings. On the contrary, the ribbon morphisms of the Hopf
algebra of cobordisms are 2-handles with non-trivial framings and the copairing is the
one introduced by Lyubashenko in [44] (see [35] and Section 4.3 below). Therefore,
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the universal algebraic category equivalent to such cobordism category necessarily
contains additional axioms connecting the ribbon structure to the braiding, in such
a way that if the braiding structure of the category is non-trivial, then the ribbon
one is forced to be non-trivial as well. Before introducing those axioms, we make the
following observation.

Proposition 4.2.9. Given any any i 2 ObjG and any g 2 G(j, k), consider
the morphisms ⇢i,g and ⇢g,i = sym(⇢i,g) of Hu

v (G) defined by (see Figure 4.2.12)

⇢i,g = (id1i ⇧m1j ,g) � (�i,j ⇧ idg) : Hg ! H1i ⇧Hg,

⇢g,i = (mg,1k
⇧ id1i) � (idg ⇧ �k,i) : Hg ! Hg ⇧H1i .

Then ⇢i,g (resp. ⇢g,i) makes Hg into a left (resp. right) H1i-comodule.

=

g

g

1i

ρg,i=

1i g

g

ρi,g

Figure 4.2.12. The morphisms ⇢g,k and ⇢k,g

Proof. The proposition is a direct consequence of (p2-2 0) and (r7-7 0). ⇤

Definition 4.2.10. Given a groupoid G, a ribbon Hopf G-algebra in a braided
monoidal category C is a unimodular Hopf G-algebra H with a family of ribbon
morphisms v, which satisfies the two additional conditions (cf. Table 4.2.13):

�g � v�1
g = µg,g � (v�1

g ⇧ v�1
g ) � �g,g ��g : Hg ! Hg ⇧Hg, (r8)

(m1k,h ⇧mg,1j) � (S1k
⇧ (µh,g � �g,h � µg,h) ⇧ S1j) � (⇢k,g ⇧ ⇢h,j) =

= �g,h : Hg ⇧Hh ! Hh ⇧Hg,
(r9)

for any g 2 G(i, j) and h 2 G(k, l).

We observe that the relations (r8) and (r9) simplify for some combinations of
the labels, because trivial copairings appear. In particular, move (r9) reduces to a
crossing change when g 2 G(i, j) and h 2 G(k, l) with {i, j} \ {k, l} = 6O.

Moreover, for a ribbon Hopf algebra whose ribbon (and copairings) morphisms
are all trivial the new axioms imply cocommutativity and trivial braiding. This
proves the independence of the two new axioms from the rest of the axioms of the
algebra. However, the same argument is not valid any more in the presence of the
self-duality (see Section 5.4), which is not compatible with the trivial choice for the
vg’s. Therefore, in the self-dual case, which refers to the algebraic description of
3-dimensional framed cobordisms, we do not claim the independence of the axioms
(r8) and (r9), even if we are convinced that this is still true.

Proposition 4.2.11. Modulo the axioms for Hu
v (G), (r8) is equivalent to ei-

ther (p10), (p11) or (p12), while (r9) is equivalent to (p13), all these relations being
defined in Table 4.2.13.
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(in addition to the axioms of ))
Axioms for the universal ribbon Hopf algebra Hr(G)

Hu
v(G

Properties of the universal ribbon Hopf algebra Hr(G)

Equivalent form of the

Inverting the antipode through the copairing

Definition and properties of Tg (f, g ∈ G(i, j) , h ∈ G(j, k) , i = j = k = i)

h g

g h

gg

gggg

1
1

1

11

g

gggg g g

gg

1 −1

−1−1

g

g

−2

(t2)(t1) (t3) (t4) (t5)

def

g g g

g g g g g g g g

g g g g g g g

1−1
1

−1

(t6) (t7) (t9)

g g gh gh

h gh h hgh g f

1

(t8)

h g

g

(p11)

(p15) (p15 ′)

g

g

2

(p14) (p14 ′)

Equivalent forms of the (r8) (r9)

−1

fgf

−1

fgf

g

fgf

fg g f

axiom axiom

ghh g

g hg h

−1

g g

g

(r8) (r9)

g

gg

−1−1

gh

g h

g

g

g

g

g

g

g

g

(p10)

(p12)

(p13)

Table 4.2.13.
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Proof. The equivalence between (r8) and (p11) derives from (s3) in Table 4.1.2
and (r3) in Table 4.2.1, after having composed both sides of (r8) with vg on the
bottom. (p10) is obtained from (r8) by composing both sides with vg on the bottom
and with the invertible morphism �g,g �µ�1

g,g � (vg ⇧ vg) (see Lemma 4.2.6) on the top.
Analogously, (p12) is obtained from (p11) by replacing g with g and composing
both sides with the invertible morphisms Sg � v�1

g and (Sg ⇧ Sg) � (vg ⇧ vg) � µ�1
g,g

respectively on the bottom and on the top.
To see that (r9) implies (p13), it su�ces to observe that the diagram on the

right side of (p13) can be reduced to the single crossing on the left side, by applying
(r9) at the crossing in the middle of it, and then using one move (p3) and four
moves (p4-5) to cancel the corresponding copairings. The opposite argument shows
that (p13) implies (r9) as well. ⇤

Definition 4.2.12. Given a groupoid G, we define the universal ribbon Hopf
G-algebraHr(G) as the braided strict monoidal category freely generated by a ribbon
Hopf G-algebra H with a family of ribbon morphisms v = {vg : Hg ! Hg}g2G.
Equivalently, Hr(G) is the quotient of Hu

v modulo the relations (r8) and (r9), i.e.
the objects and elementary morphisms of Hr(G) are the same as Hu

v (G), while the
relations are those of Hu

v (G) plus the additional axioms for the ribbon morphisms
(r8) and (r9) in Table 4.2.13.

Proposition 4.2.13. Given a groupoid G, all the relations in Table 4.2.13 hold
in the universal ribbon Hopf G-algebraHr(G). Moreover, the category equivalence in
Proposition 4.2.7 passes to the quotient to give an involutive antimonoidal category
equivalence sym : Hr(G) ! Hr(G).

Proof. The existence of the induced involutive antimonoidal category equiva-
lence sym : Hr(G) ! Hr(G) is due to the invariance of the axioms (r8) and (r9)
under sym : Hu

v (G) ! Hu
v (G).

Relations (p10) to (p13) were considered in Proposition 4.2.11. Figure 4.2.14
proves (p15), while (p15 0) follows by symmetry. Then (p14-14 0) can be derived
from (p15-15 0) in the same way as (p8) was derived from (p7) (see Figure 4.2.4)
and we leave their proof to the reader.

g

g

g g g g

g g g g

−2

−2

(a4)
(a2 ′)

(s1 ′)
(s2 ′)
(s4)

(a1-3) (r5-5 ′)

(a2)
(a4 ′)

(s1)
(s6)(r3)

1
(r4)(p10)

Figure 4.2.14. Proof of (p15) [a/123, p/140, r/132-134, s/123-125]

Properties (t2) to (t9) concern the two morphisms

Tg = Sg � v�1
g and Tg = Sg � vg
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for g 2 G(i, j) with i 6= j. Before proving these properties, notice that for an arbi-
trary g 2 G we have T�1

g = Tg, while Tg �Tg (resp. Tg �Tg) gives a full positive (resp.
negative) twist of an edge with weight �2 (resp. +2), as shown in Figure 4.2.15.

g

g

g

g

−1

−1

g

g

−2

g

g

g

g

1

1

g

g

2

(f5 ′)
(r3)(t1)

(f5)
(r3)def

Figure 4.2.15. Tg � Tg and Tg � Tg [f/129, r/132]

Now, taking into account the triviality of �i,j for i 6= j, we see that (t2-3)
immediately follow from relation (p14), (t4-5) rewrite (p11) and (r8) when g 2
G(i, j) with i 6= j, and (t6-7) rewrite (f8) and (s4) under the further assumption
that h 2 G(j, k) and j 6= k 6= i. Finally, (t8-9) are proved in Figure 4.2.16. ⇤
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Figure 4.2.16. Proof of (t8-9) [a/123, p/134-140, r/132-134, s/125, t/140]

We observe that, thanks to properties (t3-4), when g 2 G(i, j) with i 6= j the
morphism Tg is a coalgebra isomorphism, i.e. �g � Tg = (Tg ⇧ Tg) ��g.

The next proposition tells us that an inclusion of groupoids G ⇢ G0 induces an
inclusion between the corresponding universal ribbon Hopf G-algebras, hence we can
write Hr(G) ⇢ Hr(G0).

Proposition 4.2.14. Any functor ' : G ! G0 between groupoids which is
injective on the set of objects can be extended to a functor ⌥' : Hr(G) ! Hr(G0).
Moreover, if ' is faithful (an embedding) then ⌥' is also faithful.

Proof. We formally define ⌥' by applying ' to the indices of all the elementary
morphisms, that is ⌥'(�g,h) = �'(g),'(h), ⌥'(�g) = �'(g), ⌥'(⌘i) = ⌘'(i), etc.

To see that ⌥' is well-defined, we need to check that all relations for Hr(G) are
satisfied in the image. The only problem we might have would be with relations (r8)
and (r9) in Table 4.2.13. Those relations will be satisfied if we have that ⌥'(�i,j) =
�'(i),'(j), which is always true since ' is injective on objects. This concludes the first
part of the proposition since the functoriality of ⌥' is obvious.
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At this point, it is left to show that when ' is injective on morphisms, then ⌥' is
injective on morphisms as well. In this case ' induces an isomorphism of categoriesb' : G ! '(G) and ⌥b' : H(G) ! H('(G)) is an isomorphism of categories as well,
being ⌥b' and ⌥b'�1 inverse of each other by construction. Moreover, ⌥' = ⌥◆ � ⌥b'
where ◆ : '(G) ⇢ G0 is the corresponding inclusion. Hence, it su�ces to show that
the functor ⌥◆ is injective on morphisms.

Let F, F 0 : A ! B be morphisms of H('(G)) with ⌥◆(F ) = ⌥◆(F 0). Then, they
are represented by diagrams labeled in '(G) and related by a sequence of moves in
H(G0). Now, when we apply a relation move to a diagram representing a morphism of
H(G0), the only new labels that can appear are identities of G0 and products of labels
already occurring in it or their inverses. Therefore, since '(G) is a subcategory of G0,
the only labels not belonging to '(G) that can occur in the intermediate diagrams of
the sequence are identities 1i with i 2 ObjG0 �Obj '(G). The parts of the diagram
carrying such labels interact with the rest of the diagram only through move (r9)
in Table 4.2.13. Hence, by applying move (r6) to change the trivial copairings into
two units, we can disconnect those parts from the rest of the intermediate diagrams.
After that, we can delete them to get a new sequence of diagrams between F and
F 0 related by moves in H('(G)), which proves that F = F 0 in H('(G)). ⇤

4.3. The functors �n : Hr
n ! Kn

In the introduction of this chapter we argued that the category of generalized
Kirby tangles Kn contains a ribbon Hopf Gn-algebra. We will prove this fact here by
constructing a functor from the universal ribbon Hopf Gn-algebra to Kn. Being this
algebra our main object of study we will simplify the notation as follows.
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Figure 4.2.17. The functor �n : Hr
n ! Kn
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For n � 1, we denote by Hr
n the universal ribbon Hopf Gn-algebra Hr(Gn)

associated to the groupoid Gn, consisting of the set {1, . . . , n}2 with the natural
groupoid structure given by (i, j)(j, k) = (i, k) for any 1  i, j, k  n.

The next theorem is an extension of the well-known fact that the category of ad-
missible tangles contains a braided Hopf algebra (see [35, 24]). Indeed, it shows that
the categories of generalized Kirby tangles contain groupoid ribbon Hopf algebras.

Theorem 4.3.1. There exists a braided monoidal functor �n : Hr
n ! Kn,

which sends every object H(i,j) to I(i,j) (defined in Section 2.2) and the elementary
morphisms of Hr

n to the generalized Kirby tangles described in Figure 4.2.17.

Before proving the theorem, we observe that the images through �n of the form
�(i,j), the coform ⇤(i,j), the copairing �i,j and the morphism T(i,j), are equivalent in
Kn to the tangles presented in Figure 4.3.1. The case of �i,i is shown in Figure 4.3.2,
where some 1/2-handle cancelation is understood in the first diagram, while the
other cases are easier and left to the reader. Notice that the image of the copairing
�i,i is exactly the Lyubashenko’s copairing defined in [44].

i j i j

i
j

i
j

i ji j

(i,j) (i,j) )

(i,j) (i,j)

(j,j(i,i) i i j j

i j
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j

j i

(i,j)

(j,i)

i j

i
j

j i

(i,j)

(j,i)

Figure 4.3.1. Images under �n of �(i,j) ,⇤(i,j) ,�i,j , T(i,j) and T(i,j)

i i i i

i
i

i ii ii ii i

Figure 4.3.2. Deriving �n(�i,i) from (r6)

Proof of Theorem 4.3.1. We have to verify that the definition of �n on the ele-
mentary morphisms is compatible with the axioms for Hr

n, namely that it determines
equivalent images in Kn for the two diagrams involved in each of those axioms.

This is easy to check for most of the unimodular braided Hopf algebra axioms
in Tables 4.1.1 and 4.1.8. In particular, it reduces to isotopy for the braid axioms
and to deletion of canceling 1/2-pairs for the axioms (a2-2 0), (a6), (a8), (i3) and
(i4), while one needs to make one or two handle slides before deleting for the axioms
(a1), (a3), (a4-4 0), (a7), (s2-2 0), (i1), (i2) and (i5).

Axioms (a5) and (s1) are considered in Figures 4.3.3 and 4.3.4 respectively.
Axiom (s1 0) can be treated similarly to (s1).
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Figure 4.3.3. The definition of �n is compatible with (a5)
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Figure 4.3.4. The definition of �n is compatible with (s1)

Now, let us pass to the ribbon axioms in Tables 4.2.1 and 4.2.13. The compat-
ibility with the axioms (r1) to (r5) can be easily proved by applying once again
cancelations of 1/2-pairs after suitable handle slidings. The rest of the ribbon ax-
ioms are dealt with in Figures 4.3.5, 4.3.6 and 4.3.7. Here, in the rightmost diagrams
of the last two figures some cancelations of 1/2-pairs and some crossing changes
moves between components with di↵erent labels (when they appear) have been
performed. ⇤
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Figure 4.3.5. The definition of �n is compatible with (r7)
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Figure 4.3.6. The definition of �n is compatible with (r8)
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Figure 4.3.7. The definition of �n is compatible with (r9)

4.4. The adjoint morphisms

As we have seen in Section 2.3, the pushing through an 1-handle move plays an
essential role in the definition of the reduction functor #n

k : Kn99)k ! Kk for Kirby
tangles and in the proof that such functor is a category equivalence.

Now we introduce and study the algebraic analog of such move: the intertwining
of a morphism with the adjoint action of the ribbon Hopf algebra on itself. This will
be used in Section 4.5 to define the reduction functor between the corresponding
algebraic categories.

We remind that the (right) adjoint action of a group G on itself is defined by
ad(x) : g 7! gx = xgx for any x, g 2 G. This definition can be extended to an
arbitrary groupoid G just by deleting x and/or x from xgx when the corresponding
composition with g is not defined.

Proposition 4.4.1. Let G be a groupoid. Given x 2 G(i0, j0), let x : G ! G
be defined on the objects as ix0 = j0 and ix = i for i 6= i0, and on the morphisms as

gx =

8>><
>>:

xgx if g 2 G(i0, i0),
xg if g 2 G(i0, j) with j 6= i0,
gx if g 2 G(i, i0) with i 6= i0,
g if g 2 G(i, j) with i, j 6= i0.

Denoting by G\i ⇢ G the full subgroupoid of G with ObjG\i = ObjG � {i} for
i 2 ObjG, the following statements hold:

(a) x : G ! G is a functor, in particular (gh)x = gxhx and gx = gx for any g, h 2 G;

(b) (gx)y = gxy for any x, y, g 2 G, that is the functors x with x 2 G give a right
action of G on itself;

(c) if i0 6= j0, then the image Gx of x is the subgroupoid G\i0 and x : G ! G\i0 is
a left inverse of the inclusion G\i0 ⇢ G;

(d) x restricts to an equivalence of categories G\j0 ! G\i0 , whose inverse G\i0 ! G\j0

is the corresponding restriction of x (both are the identity of G\i0 if i0 = j0);

(e) for any x 2 G(i0, j0) and y 2 G(i0, k0), there exists a natural equivalence
N : x ! y such that N(i0) = xy and N(i) = 1i for i 6= i0.

Proof. All statements are straightforward and left to the reader. ⇤
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Given x 2 G(i0, j0), the functor x : G ! G uniquely extends to a monoidal
map x : ⇧G ! ⇧G given by ⇡x = (gx

1 , . . . , g
x
m) for any ⇡ = (g1, . . . , gm) 2 ⇧G,

and this in turn induces a monoidal map x : ObjHr(G) ! ObjHr(G), by putting
Hx

⇡ = H⇡x . Note that the specialization of x to the case of the groupoid Gn, coincides
the homonymous map defined in Lemma 2.3.6, i.e. given a sequence ⇡ 2 ⇧Gn, ⇡x is
obtained by changing all elements i0 to j0.

The main goal of this section is to construct a monoidal functor x : Hr(G) !
Hr(G) which coincides with this map on the objects and it is the algebraic analog
of the functor x : Kn ! Kn defined in Lemma 2.3.6. In particular, we require that
the following conditions are satisfied:

(a) if x = 1i0 then x is the identity functor;

(b) given y 2 G(i0, k0), there is a natural equivalence

⇠x,y : idyx ⇧ x ! idyx ⇧ y ;

that is, to any ⇡ 2 ⇧G is associated an isomorphism ⇠x,y
⇡ : Hyx ⇧Hx

⇡ ! Hyx ⇧Hy
⇡ ,

such that for every morphism F : H⇡0 ! H⇡1 in Hr(G) we have

(idyx ⇧ F y) � ⇠x,y
⇡0

= ⇠x,y
⇡1
� (idyx ⇧ F x) ;

(c) if G = Gn, then �n(F x) = �n(F )x and �n(⇠x,y
⇡ ) = ⇠x,y

⇡ for any x, y 2 Gn, ⇡ 2 ⇧Gn

and F 2 MorHr
n (cf. Lemma 2.3.6).

The natural transformation ⇠x,y in (b) will be expressed in terms of the cate-
gorical generalization of the adjoint action of the ribbon groupoid Hopf algebra on
itself. Before introducing this generalization, we remind the definition of the adjoint
action in the case of the trivial groupoid.

Let C be a (strict) braided monoidal category, (H,mH , ⌘H ,�H , "H , SH) be a
braided Hopf algebra in C over the trivial groupoid, and A be an algebra in C with
multiplication mA and unit ⌘A. We remind that a morphism ↵ : H ⇧A ! A defines
a left action of H on A if the following conditions hold:

↵ � (⌘H ⇧ idA) = idA : A ! A ;

↵ � (mH � idA) = ↵ � (idH ⇧ ↵) : H ⇧H ⇧A ! A ;

↵ � (idH ⇧ ⌘A) = ⌘A � "H : H ! A ;

↵ � (idH ⇧mA) = mA � (↵ ⇧ ↵) � (idH ⇧ �H,A ⇧ idA) � (�H ⇧ idA⇧A) : H ⇧A ⇧A ! A .

The first two conditions express the fact that A is a left H-module, while the last two
state that the action intertwines with the multiplication and the unit of A, giving
in this way a left H-algebra structure on A (cf. Definition 4.1.2 in [57]). The notion
of right action is symmetric and corresponds to a right H-algebra structure on A.

The (left) adjoint action of H on itself is defined as

adH = mH � (mH ⇧ SH) � (idH ⇧ �H,H) � (�H ⇧ idH) : H ⇧H ! H.

One can introduce analogously the right adjoint action of H on itself, by a symmetric
formula with interchanged roles of the two H’s in the source. In the case of a group
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algebra and trivial braiding, the formula for the right adjoint action of H on itself
coincides with the adjoint action of a group G on itself recalled above.

The fact that these are indeed left and right actions is a classical result and
the reader can find the proof in a more general context in Proposition 4.4.3 be-
low. In particular, the adjoint action intertwines with the multiplication and the
unit morphisms. On the other hand, in the classical case (trivial braiding) such ac-
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tion is known to intertwine with the comultiplication and the antipode only when
the Hopf algebra is cocommutative (see Lemma 5.7.2 in [57]). One of the main re-
sults of this section will be that, in the case of a ribbon braided Hopf algebra over
the trivial groupoid, the adjoint action intertwines with all elementary morphisms
including comultiplication, antipode and braiding (cf. Proposition 4.4.11). Since a
ribbon Hopf algebra with non-trivial braiding is not cocommutative, the proof of
this fact necessarily makes use of the new ribbon axioms (r8) and (r9) in Table
4.2.13.

Now, we proceed with the generalization of the notion of adjoint action to a
groupoid Hopf G-algebra with a possibly non-trivial groupoid G.

Definition 4.4.2. Let G be a groupoid. Given x 2 G(i0, j0) and y 2 G(i0, k0),
for any ⇡ 2 ⇧G we define the left adjoint morphism ↵x,y

⇡ : Hyx⇧Hx
⇡ ! Hy

⇡ inductively
by the following identities (cf. Table 4.4.1), where g 2 G(i, j) and ⇡ = ⇡0 ⇧ ⇡00:

↵x,y
g =

8>>>>><
>>>>>:

"yx ⇧ idgx if i 6= i0 6= j,

myx,gx if i = i0 6= j,

mgx,xy � (idgx ⇧ Syx) � �yx,gx if i 6= i0 = j,

myxgx,xy � (myx,gx ⇧ Syx) �
� (idyx ⇧ �yx,gx) � (�yx ⇧ idgx) if i = i0 = j;

(q1)

↵x,y
⇡ = ↵x,y

⇡0⇧⇡00 = (↵x,y
⇡0 ⇧ ↵x,y

⇡00 ) � (idyx ⇧ �yx,⇡0x ⇧ id⇡00x) � (�yx ⇧ id⇡0x⇧⇡00x). (q2)

We also define the symmetric right adjoint morphism (↵x,y
⇡ )0 : Hx

⇡ ⇧Hxy ! Hy
⇡ by the

following identity (cf. Table 4.4.1), where sym(⇡) = sym(g1, . . . , gm) = (gm, . . . , g1):

(↵x,y
⇡ )0 = sym(↵x,y

sym(⇡)) .

We will use the simplified notation ↵x
⇡ and (↵y

⇡)0 respectively for ↵x,1i0
⇡ : Hx⇧Hx

⇡ ! H⇡

and (↵1i0 ,y
⇡ )0 : Hy

⇡ ⇧Hy ! H⇡.

We emphasize that in the definition above Hx
⇡ and Hy

⇡ should not be thought as
objects of Hr(G), but instead as pairs (H⇡, x) and (H⇡, y), and similarly ⇡x and ⇡y in
the corresponding diagrams should not be thought as sequences in ⇧G, but instead
as pairs (⇡, x) and (⇡, y). This requires that both the algebraic and the graphical
notation keep track of such pairs. Actually, it is enough to specify the target or the
source, since one of them determines the other. The only exception to such a rule
will be in the case of x = y = 1i, when we will write simply ↵1i

⇡ : H1i ⇧ H⇡ ! H⇡

and (↵1i
⇡ )0 : H⇡ ⇧H1i! H⇡, where H⇡ stays for H1i

⇡ . In particular, in the expression
↵1i

⇡ : H1i ⇧H⇡z ! H⇡z , ⇡z should be interpreted as an element in ⇧G, and H⇡z stays
for H1i

⇡z .

Proposition 4.4.3. The adjoint morphisms ↵ and ↵0 defined by the identities
(q1) and (q2) above satisfy all the action properties in Table 4.4.1, for any x 2
G(i0, j0), y 2 G(i0, k0), z 2 G(i0, l0) and ⇡ 2 ⇧G, with arbitrary composable g, h 2 G
and i 2 ObjG. In particular, ↵1i

⇡ (resp. (↵1i
⇡ )0 ) makes H⇡ into a left (resp. right)

H1i-module, for any i 2 ObjG.

Proof. Up to symmetry, the properties (q3 0) to (q6 0) of the morphisms ↵0 are
equivalent the corresponding properties (q3) to (q6) of the morphisms ↵, hence it
su�ces to prove the latter ones.
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Identity (q3) is an immediate consequences of axioms (a4-4 0) and (a7) in Table
4.1.1 and property (s6) in Table 4.1.2. To prove (q4), we first consider the special
case when ⇡ = g 2 G in Figure 4.4.2. Then, the general case follows by the inductive
argument shown in Figure 4.4.3.
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gz

zy yx gx

(a3)
(a5)
(s4)

gz

yxzy gx

Figure 4.4.2. Proof of (q4): the case of ⇡ = g 2 G [a/123, s/125]
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Figure 4.4.3. Proof of (q4): the inductive step [a/123, q/148]
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Figure 4.4.4. Proof of (q6) for g, h 2 G(i0, i0) (x 2 G(i0, j0) and y 2 G(i0, k0))
[a-s/123]

Identity (q5) is trivial for i 6= i0, while it follows from axioms (a4) and (s1 0) in
Table 4.1.1 for i = i0. Finally, identity (q6) is considered in Figure 4.4.4, in the case
when g, h 2 G(i0, i0). For the other cases, one can just delete the proper edges from
the diagrams in that figure. ⇤

Remark 4.4.4. In the case when G = G1 is the trivial groupoid, the unique
left (resp. right) adjoint morphism ↵ = ↵(1,1)

1 (resp. ↵0 = (↵(1,1)
1 )0) in Definition 4.4.2

gives the left (resp. right) adjoint action of H = H(1,1) on itself. In the general case,
according to what we said after the definition, the left (resp. right) adjoint morphisms
↵x,y

g (resp. (↵x,y
g )0) can be thought in a certain sense to act on the product H ⇥G of

the Hopf G-algebra H = {Hg}g2G with the groupoid G itself.
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Before going on, we prove the properties of the adjoint morphisms listed in Table
4.4.5. These will be used to define the functor x : Hr(G) ! Hr(G) and the natural
transformation ⇠x,y which relates x and y for composable y and x.
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)(q13)(q12 (q12 ′) (q13 ′)

xx

Properties of the adjoint of Hr(G)morphisms

gh

hg

gh

hg

1i 1i

1j 1j 1k 1k

1l 1l

hg

gh

1k 1k

1l 1l

gh

g h

1i 1i

1j 1j

gh

g h

Table 4.4.5.
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Proposition 4.4.5. The properties in Table 4.4.5 hold in Hr(G). Moreover,
modulo the other axioms of Hr(G), (r8) is equivalent to either (q7) or (q7 0), while
(r9) is equivalent to either (q8), (q8 0), (q9) or (q9 0).

Proof. We can limit ourselves to prove properties (q7) to (q13), since the cor-
responding primed properties are the symmetric of them under the functor sym.
Actually, (q11 0) becomes the symmetric of (q11) after composition with the isomor-
phism �g,1k

� S1k
.

Property (q12) is proved in Figure 4.4.6, and (q13) can be proved in a similar
way, by using (s1 0) instead of (s1). We observe that the proof of (q4), and therefore
that of (q12), uses only the axioms of Hu

v (G).

(q4) (q3)(s1)

gx

y x

x y

gxxx

gx

x x

gxxx xx gx

gxgx

x x

gxxx

Figure 4.4.6. Proof of (q12) [q/148, s/123]

Relation (q7) is obtained in the top line of Figure 4.4.7. The bottom line of the
same figure shows that (q7) implies (r8) modulo the relations of Hu

v (G), including
(q13 0) (see above). Actually, the two moves (r7 0) in the figure occur only when both
the involved copairings are non-trivial, that is when i = j.

g

gg

−1−1

g g

g

(p9 ′)
(r5-5′)

−1

1i 1i

g gg

g

−1

g

g

−1

g
−1

g g

(r7 ′)
(q1 ′) (s2 ′)

11 ′)(f5-
(a3)

g

g g

g

1i 1i

gg

g

gg gg

g
1

−1

−1

g

g g

1

−1 −1

(a3)

(s3)
(r7 ′)

(q1 ′) (p3)
(r5-5′)

(p3)

11 ′)(f5-
(s2)

(s2 ′)
(p5)

(p9 ′)
(s2′-4)

-4)(s2

(p10)

(a4 ′)

(a3)

(r7 ′)
(p3)

(p2)
(q13 ′)

(q7)

Figure 4.4.7. Equivalence between (q7) and (r8) (g 2 G(i, j)) [a/123, f/129-134,
p/134–140, q/148-151, r/132-134, s/123-125]

Then, we can derive (q11) and (q10) in the order, as described in Figures 4.4.8
and 4.4.9 respectively. In steps four and six of the former figure relation (t2) is used
instead of (p14 0) and (p15 0) when i 6= k, while in the latter it is used instead of
(p15) when i 6= j.
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(q1)
(a3)

(a3)
(a3)(s4)

(s3)

(a3)

2 2

(a3)
(a3)
(r7 ′)
(q1 ′)

(q1 ′)

(p14 ′)
or (t2)

(p15 ′)
or (t2)

(a3)
(r5 ′)

if j = k

if i = k

if j = k

if i = k

if j = k

if i = k if i = k

if j = k

if j = k
if i = k

-4)(s2

-4)(s2

(s2′-4)

-(q7 13 ′)
1k 1k

1k 1k

g g g g

g g g g g

g g g g

g g g g g

1k 1k 1k 1k

1k 1k 1k 1k 1k

1k 1k

Figure 4.4.8. Proof of (q11) (g 2 G(i, j)) [a/123, p/140, q/148-151, r/134, s/125,
t/140]

1i 1i

g

g g

g

g

g

(r7 ′)
(q1)

(p3)

(p15) (s4)
(r5)

(a3)

g

g

−2

(p3-8)

1i 1i

g

g

or (t2)

if i = j

(p3)
(q11)

Figure 4.4.9. Proof of (q10) (g 2 G(i, j)) [a/123, p/134-140, q/148-151, r/132-
134, s/125]

gh

hg

1i 1i

1j 1j

(q1 ′)
(q1 ′)

(r7-7′)
(a3) (a3)

(p3)

(s2′-4)
(f5′

h g

g h

-11)

gh

g h

hg

gh

1i 1i1i 1i

1i 1i

gh

hg

1i 1i

1i 1i

gh

hg

1i 1i

gh

hg

(q4) (s2)
(f5-11)

(a3)
(r7)
(q1)

Figure 4.4.10. Equivalence between (r9) and (q8) (g 2 G(i, j)) [a/123, f/129-
134, p/134, q/148-151, r/132-134, s/123-125]
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Finally, we are left with (q8) and (q9). A straightforward application of (q12-12 0)
and (q13-13 0) shows that the diagrams in (q9) represent the inverse morphisms of
those represented by the diagrams in (q8), which gives the equivalence between
(q8) and (q9). Then, it su�ces to verify that (r9) is equivalent to (q8) modulo the
axioms of Hu

v (G). This is done in the top line of Figure 4.4.10. Like above, the moves
(r7-7 0) occur only when both the involved copairings are non-trivial, that is when
the corresponding optional edges in the resulting (↵1i

h )0 and (↵1j
h )0 are present. In the

bottom line of the same figure we obtain the special form for i = j, starting from
the last diagram in the top line. ⇤

Now we will use the left adjoint morphisms to define the algebraic analog of
the family of isomorphisms ⇠x,y

⇡ , introduced in Lemma 2.3.6. Like in the case of
the category of Kirby tangles, such isomorphisms will eventually define a natural
transformation between the functors x and y.

Definition 4.4.6. Given x 2 G(i0, j0) and y 2 G(i0, k0), we define the family
of morphisms ⇠x,y

⇡ 2 Hr(G) for any ⇡ 2 ⇧G as follows (see Figure 4.4.11):

⇠x,y
⇡ = (idyx ⇧ ↵x,y

⇡ ) � (�yx ⇧ id⇡x) : Hyx ⇧Hx
⇡ ! Hyx ⇧Hy

⇡ .

We will use the simplified notation ⇠x
⇡ for ⇠

x,1i0
⇡ : Hx ⇧Hx

⇡ ! Hx ⇧H⇡.

ξx,y
π = =(ξx,y

π )−1
y x

πx

πyyx

yx

x y

πy

πxyx

yx

Figure 4.4.11.

Proposition 4.4.7. For any x 2 G(i0, j0), y 2 G(i0, k0) and ⇡ 2 ⇧G the mor-
phism ⇠x,y

⇡ is invertible and its inverse is (see Figure 4.4.11):

(⇠x,y
⇡ )�1 = (idyx ⇧ ↵y,x

⇡ ) � (idyx ⇧ Syx ⇧ id⇡y) � (�yx ⇧ id⇡y) : Hyx ⇧Hy
⇡ ! Hyx ⇧Hx

⇡ .

Proof. This is a direct consequence of properties (q12-13) in Table 4.4.5. ⇤

The next proposition makes into a formal statement the idea that the isomor-
phisms ⇠x,y 2 MorHr

n given by the above definition for G = Gn are nothing else
than the algebraic counterpart, under the functors �n defined in Section 4.3, of the
homonymous isomorphisms ⇠x,y 2 MorKn introduced in Section 2.3.

Proposition 4.4.8. Given x = (i0, j0) and y = (i0, k0) in Gn, for any ⇡ 2 ⇧Gn

we have that �n(Hx
⇡) = Ix

⇡ and �n(⇠x,y
⇡ ) = ⇠x,y

⇡ (cf. Lemma 2.3.6).

Proof. The identity on the objects follows immediately from the definition of
�n. For the one on the morphisms, a straightforward verification shows that

⇠x,y
⇡0⇧⇡00 = (⇠x,y

⇡0 ⇧ ⇠x,y
⇡00 ) � (idyx ⇧ �yx,⇡0x ⇧ id⇡00x) � (�yx ⇧ id⇡0x⇧⇡00x)

holds in both the categories Hr
n and Kn. Hence, it su�ces to consider the elementary

case of ⇠x,y
(i,j) with (i, j) 2 Gn. We leave to the reader to check that �n(⇠x,y

(i,j)) = ⇠x,y
(i,j)

holds for all possible combinations of indices, but Figure 4.4.12 should be helpful. ⇤
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x y

gxyx

gy hy

hx

Φn

gy hy

gx hxyx k0 j0 j0j0

j0
j0

k0

j0

k0

j0

k0 j0 j0j0j0 j0

j0
j0

j0

j0

k0 k0 k0 k0 k0 k0i i

ii

i

i

Figure 4.4.12. (x = (i0, j0), y = (i0, k0), g = (i0, i0), h = (i0, i) with i 6= i0)

At this point, we can proceed with the main result of this section, which is the
algebraic analog of Lemma 2.3.6.

As the first step, given x 2 G(i0, j0), we define F x for any elementary morphism
F of Hr(G). The most obvious definition, consisting in the formal extension of x :
G ! G with x acting on the indices, works for i0 = j0 but it runs into problems
for i0 6= j0, due to the fact that in the latter case the copairing �i0,j0 is trivial,
while �ix0 ,jx

0
= �j0,j0 is not. Thus, some corrections are needed. Since we want to have

�n(F )x = �n(F x) for any morphism F in Hr
n, the reader can realize the nature of

these corrections by looking at the �n(F )x’s in Figures 2.3.14, 2.3.15 and 2.3.16 (cf.
Lemma 2.3.6 and the discussion following it).

Definition 4.4.9. We define x on the elementary morphisms of Hr(G) by
putting, for any i, j, k, l 2 ObjG, g 2 G(i, j) and h 2 G(k, l), with j = k for mg,h:

(⌘i)x = ⌘ix ; (mg,h)x = mgx,hx ; ("g)x = "gx ; (li)x = lix ; (Lg)x = Lgx ; (vg)x = vgx ;

(�g)x =

⇢
µ�1

gx,gx��gx = (Sgx� v�1
gx ) ⇧ (Sgx� v�1

gx ) ��gx� Sgx� vgx if i 6= i0 = j,

�gx otherwise;

(Sg)x =

⇢
mgx,1i� (Sgx ⇧ id1i) � ⇢gx,i = Sgx� v2

gx if i 6= i0 = j,

Sgx otherwise;

(Sg)x =

⇢
mgx,1i� (Sgx ⇧ S1i) � ⇢gx,i = Sgx� v�2

gx if i = i0 6= j,

Sgx otherwise.

(�g,h)x =

8>>>>>>><
>>>>>>>:

�gx,hx if i = i0 = j,

((↵x,x
h � �hx,1j0

) ⇧ idgx) � (idhx ⇧ ⇢j0,gx) � �gx,hx if i 6= i0 = j,

�gx,hx� (idgx ⇧ (↵x,x
h � (S1j0

⇧ idhx))) � (⇢gx,j0⇧ idhx) if i = i0 6= j,

((↵x,x
h � �hx,1j0

) ⇧ idgx) � (idhx ⇧ ⇢j0,gx) � �gx,hx�
� (idgx ⇧ (↵x,x

h � (S1j0
⇧ idhx))) � (⇢gx,j0⇧ idhx) if i 6= i0 6= j;

(�g,h)x =

8>>>>>>><
>>>>>>>:

�gx,hx if i = i0 = j,

(idhx ⇧ ↵x,x
g ) � (⇢hx,j0⇧ idgx) � �gx,hx if i 6= i0 = j,

�gx,hx� ((↵x,x
g � �gx,1j0

� (idgx ⇧ S1j0
)) ⇧ idhx) � (idgx ⇧ ⇢j0,hx) if i = i0 6= j,

(idhx ⇧ ↵x,x
g ) � (⇢hx,j0⇧ idgx) � �gx,hx �

� ((↵x,x
g � �gx,1j0

� (idgx ⇧ S1j0
)) ⇧ idhx) � (idgx ⇧ ⇢j0,hx) if i 6= i0 6= j;
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Then, according to relation (r6) in Table 4.2.1, we also put:

(�i,j)
x =

⇢
⌘j0⇧ ⌘j0 if {i, j} = {i0, j0} and i0 6= j0,

�ix,jx otherwise.

The diagrams of (�g)x, (Sg)x and (Sg)x are presented in Figure 4.4.13, while
those of (�g,h)x and (�g,h)x are presented in Figure 4.4.14 (here, the antipodes have
been moved by (p3) just for pictorial convenience). The equivalences in Figure 4.4.14
can be obtained by moves symmetric to those in the top line of Figure 4.4.10 per-
formed in the reversed order.

g g

g

x

gx gx

gx gx gx gx

−1−1

1

ji ̸= i0 =if

x

g

g

2

gx

gx

(p14)

gx

gx

x

−2

g

g

gx

gx

(p15)

gx

gx
ji ̸= i0 =if ji ̸= i0 =if

(p5)
(p11)

Figure 4.4.13. (�g)x, (Sg)x and (Sg)x (g 2 G(i, j) and x 2 G(i0, j0)) [p/134-140]

gh

g h

l i0and

l = i0and

l i0
i0

and
j =if

and k = i0

and k i0

i ̸= i0if

i = i0if

i = i0if

j ̸= i0if

̸= ̸=

̸= and k i0̸=
i0j =if

l ̸= i0if

k ̸= i0if

gx

gx hx

hx

(r7-7 ′)

gh

g h

x

and k = i0
j ̸= i0if

i ̸= i0if
l = i0and

gx

gx hx

hx

(r7-7 ′)

(s2′-4)
(f5′-11)

-4)(s2
11 ′)(f5-

x

(q1)

x x

x x

gx

gx hx

i ̸= i0if

j ̸= i0if

hx

x x

hx gx

gx hx

x x (q1)

Figure 4.4.14. (�g,h)x and (�g,h)x (g 2 G(i, j), h 2 G(k, l) and x 2 G(i0, j0))
[f/129-134, q/148, r/132-134, s/123-125]

We observe that all the corrections to the formal extension of x : G ! G to the
elementary morphisms are inessential when i0 = j0, being the involved copairings
trivial in this case. Moreover, if i0 6= j0 then all conditions requiring that certain
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index is 6= i0 (resp. 6= j0) can be replaced by = j0 (resp. = i0), because only in that
case the copairing involved is non-trivial. The reason for applying the corrections
even in some inessential cases, like we did with crossing changes when defining x

for Kirby tangles in Section 2.3, is that this simplifies some proofs in the following.
In particular, the proof of property (q15) in Table 4.4.15 below for i0 = j0, which is
far from being trivial in spite of the triviality of x as a formal extension, will split
into subcases of other cases.

It is also worth noticing that the righthand diagrams in Figures 4.4.13 and 4.4.14
are not symmetric, because of the conditions controlling the presence of the optional
edges. In other words, our definition of x on the elementary morphisms does not
commute with the symmetry functor sym.

x y

yx

F x
x y

yx

F y

πy
1 πy

1

)(q14

πx
0πx

0

x y

yx

yx

F x
x y

yx

yx

F y

πy
1

πx
0

πy
1

πx
0

)(q15

Intertwining property of the adjoint of Hr(G)morphisms

Table 4.4.15.

Lemma 4.4.10. Given x 2 G(i0, j0) and y 2 G(i0, k0), the properties (q14) and
(q15) shown in Table 4.4.15 hold for F being any elementary morphism of Hr(G).

Proof. We can limit ourselves to the proof of (q14), since (q15) can be obtained
from it, essentially by composing with �yx ⇧ id⇡x

0
.

For F = ⌘i and F = mg,h (q14) coincides with action properties (q5) and
(q6) respectively, and it was already established in Proposition 4.4.3. Moreover, the
identity (q14) for F = �i,j follows from the ones for the other elementary morphisms,
being the definition of (�i,j)x based on (r6).

Before considering the rest of the elementary morphisms, we notice that, when F
is invertible, the identity (q14) for F implies the one for F�1, once we have checked
that (F�1)x = (F x)�1. This is trivially true for F = Sg, while it can be easily verified
for F = �g,h by using moves (r7-7 0) and (q12-13) in Tables 4.2.1, 4.2.2 and 4.4.5.

Hence, we are reduced to proving (q14) for F = li, "g, Lg, vg, �g, Sg, �g,h with
i 2 ObjG, g 2 G(i, j) and h 2 G(k, l), and any x 2 G(i0, j0) and y 2 G(i0, k0).

1i0yx yx 1i0 yx 1i0 yx 1i0

(f7)(a3)
(s4)(a4)

(s1)

(i5)

Figure 4.4.16. Proof of (q14) for F = li0 (x 2 G(k0, i0) and y 2 G(j0, k0))
[a/123, i-f/129, s/123-125]
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F = li. If i 6= i0 there is nothing to prove, being ⇠x,y
1i

trivial and F x = F y = F .
The case when i = i0 is shown in Figure 4.4.16.

F = "g, Lg, vg. The statements follow respectively from (a6) in Table 4.1.1,
(i2-2 0) in Table 4.1.2 and (r5-5 0) in Table 4.2.1 and 4.2.2, modulo the relations
(a2-2 0) in Table 4.1.1 and (s5) in Table 4.1.2 in the first two cases.

F = �g. As above, there is nothing to prove for g 2 G(i, j) with i, j 6= i0.
For g 2 G(i0, j) with j 6= i0, the statement essentially reduces to the relation (a5)
in Table 4.1.1. The proof for g 2 G(i, i0) with i 6= i0 is presented in Figure 4.4.17,
while the case g 2 G(i0, i0) is shown in Figure 4.4.18. The first step of the latter

yx

gygy

gx

−1−1

yx

gygy

gx

−1−1−1
−1

−1

yx gx

gygy

1 1

−1

gy gy

yx gx

(s4)
(r5 ′)

(a5)
(r5)

1
(s2′-4)

1

Figure 4.4.17. Proof of (q14) for F = �g with g 2 G(i, i0) and i 6= i0 (x 2
G(i0, j0) and y 2 G(i0, k0)) [a/123, r/132-134, s/125]

yx gx

gy gygy gy gy

yx gx yx gx

y y

(a5)

(a1)

(a5)
(s3)

(q1)(q8)

1k0 1k0

yx gx

x y

gy gy

yx gx

x y

gy gy

x y

gy

(a1)
(a4 ′)

(r7 ′)

(p2)

(p3)

(q13 ′)

(q7)
(q4)

Figure 4.4.18. Proof of (q14) for F = �g with g 2 G(i0, i0) (x 2 G(i0, j0) and
y 2 G(i0, k0)) [a/123, p/134, q/148-151, s/123-125]

yx gx

gy

yx gx

gy

(a3) (a3)

(q7 ′)

gy

yx gx

gy

(q9)

yx gx yx gx

gy

(q10 ′)

(q11 ′)

(a3)
(a3)(f5-11)

(q13)

-4)(s2
-4)(s2

1j0 1j0

1j0 1j0

1j0 1j0

1j0 1j0

1j0 1j0

1j0 1j0

(p3)
(r7)

(a4)
(p2 ′)

Figure 4.4.19. Proof of (q14) for F = Sg with g 2 G(i0, i0) (x 2 G(i0, j0) and
y 2 G(i0, k0)) [a/123, f/129-134, q/151, s/125]
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figure goes like in the first step of the second line of Figure 4.4.7. Moreover, before
applying (q8) in the second step, we replace the morphism ↵y,y

g with the formally
identical one ↵1k0g .

F = Sg. If g 2 G(i, j) with i, j 6= i0 there is nothing to prove, being ↵x,y
g trivial

and (Sg)x = (Sg)y = Sg. When g 2 G(i, i0) with i 6= i0 or g 2 G(i0, j) with j 6= i0, the
statement is equivalent to the property (s4) of the antipode in Table 4.1.2. Figure
4.4.19 addresses the case of g 2 G(i0, i0).

F = �g,h. We first prove that (�g,h)x and (�g,h)x can be represented by the
diagrams depicted in Figure 4.4.20. Since these diagrams can be easily seen to be
inverse to one another by using the relations (r7 0), (q4) and (q12-13) in Tables 4.2.2,
4.4.1 and 4.4.5, it su�ces to consider (�g,h)x.

gh

g h

x

gh

g h

x

x x

1j0 1j0

x x

gxhx

hxgx

1j0 1j0

x x

gxhx

gx hx

x x

Figure 4.4.20. Equivalent forms of (�g,h)x and (�g,h)x (x 2 G(i0, j0))

Look at the diagram corresponding to (�g,h)x in Figure 4.4.20. When i0 = j0,
we can substitute ↵1j0

gx with ↵x,x
g and cancel this with the preexisting one by move

(q12) in Table 4.4.5. After that also ↵x,x
h can be deleted to get �gx,hx , which in this

case is equal to (�h,g)x as we noticed above.
Now assume i0 6= j0. We have already observed that in this case the condition

i 6= i0 (resp. j 6= i0) in the definition of (�g,h)x (cf. Figure 4.4.14) is equivalent to
i = j0 (resp. j = j0). Then, Figures 4.4.21 and 4.4.22 deal with the cases g 2 G(i0, j)
and g 2 G(j0, j) respectively. For g 2 G(i, j) with i 6= i0, j0, we refer again to Figure
4.4.21, noting that the second diagram in the figure is directly isotopic to the fourth
one, once the edges marked with an asterisk in the expansions of the ↵’s are deleted.

x x

hx gx

gx hx

x x

hx gx

gx hx

if

x x

gxhx

gx hx

x x

hxgx

gyhy

(a1)

(a1-3)

-3)(s2

-3)(s2

(s2′-3)

(a3)

(s1)

(s2)
(a2 4′)′-

(s1 ′)

j = j0j = i0

jx= j0if

j = i0if

jx= j0if

x x

1j0 1j0

x x
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Figure 4.4.21. (g 2 G(i0, j) and x 2 G(i0, j0)) [a/123, q/148, s/123-125]
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Figure 4.4.22. (g 2 G(j0, j) and x 2 G(i0, j0)) [a/123, f/129-134, p/134, q/148-
151, r/134, s/123-125]
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Figure 4.4.23. Proof of (q14) for �g,h (x 2 G(i0, j0) and y 2 G(i0, k0)) [a/123,
f/129-134, p/134-140, q/148-151-157, r/132-134, s/123-125]

At this point, identity (q14) for �g,h is proved in Figure 4.4.23, where (�g,h)x

in the first diagram has the original form, while (�g,h)y in the last diagram has the
equivalent form given above. We note that the top line ends with two applications of
(q1) to get ↵x,x

g and ↵1k0
gx in the fourth diagram. The conditions of the corresponding

optional edges in the third diagram are explicitly indicated for ↵x,x
g , while they

are implicitly provided by the copairings occurring in them for ↵1k0
gx . Moreover, we

observe that the second diagram in the bottom line is obtained from the first one,
by moving ↵x,y

g down and letting it pass through ↵1k0
yx . This can be done thanks to

the identity (q14) we have already proved for the elementary morphisms S, � and
m, once ↵x,y

g has been transformed as in the first step of Figure 4.4.8. ⇤
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Below, G\i denotes the full subgroupoid of G with ObjG\i = ObjG � {i} (cf.
Proposition 4.4.1) and Hr(G\i) ⇢ Hr(G) is the universal ribbon Hopf algebra con-
structed on G\i, with the inclusion given by Proposition 4.2.14.

Proposition 4.4.11. Let G be a groupoid. For any x 2 G(i0, j0) the map
x : ObjHr(G) ! ObjHr(G) defined after Proposition 4.4.1 extends to a monoidal

functor
x : Hr(G) ! Hr(G) ,

which transforms the elementary morphisms according to in Definition 4.4.9, and
satisfies the following properties:

(a) if i0 6= j0 then (Hr(G))x ⇢ Hr(G\i0), hence there is an induced functor

x : Hr(G) ! Hr(G\i0) ;

(b) x restricts to the identity on Hr(G\i0) and to an equivalence of categories
Hr(G\j0) ! Hr(G\i0), whose inverse is given by the restriction of x to Hr(G\i0);

(c) for any other y 2 G(i0, k0), the isomorphisms ⇠x,y
⇡ introduced in Definition 4.4.6

(cf. Proposition 4.4.7) give a natural equivalence

⇠x,y : idyx ⇧ x ! idyx ⇧ y ,

i.e. for any morphism F : H⇡0 ! H⇡1 in Hr(G) we have (cf. Table 4.4.15):

⇠x,y
⇡1
� (idyx ⇧ F x) = (idyx ⇧ F y) � ⇠x,y

⇡0
. (q15)

Proof. We want to show that the propagation of the definition of x over prod-
ucts and compositions is well-defined, i.e. it preserves all the axioms relating the
elementary morphisms in Hr(G) presented in Tables 4.1.1, 4.1.8, 4.2.1 and 4.2.13.
This will give us the functor x : Hr(G) ! Hr(G).

We only need to consider the case i0 6= j0, since for i0 = j0 the map x acts as
identity on the elementary morphisms.

Let us begin with the braid axioms in Table 4.1.1. The preservation of (b1) and
(b2) is equivalent to the identity (��1

g,h)
x = ((�g,h)x)�1, which was already discussed

at the beginning of the proof of Lemma 4.4.10. Move (b3) is trivially preserved.

x x

ππ′

π′π

ππ′

π′π

πxπ′

πx

x

π′x

π′x πx

πx π′x

1j0 1j0

1j0 1j0

x x

x x

x x

x x

Figure 4.4.24. (�⇡,⇡0)x and (�⇡,⇡0)x (x 2 G(i0, j0))
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To deal with moves (b4-4 0), we first prove that the alternative form provided in
Figure 4.4.20 for (�g,h)x and (�g,h)x can be generalized to (�⇡,⇡0)x and (�⇡,⇡0)x for any
⇡,⇡0 2 ⇧G, as shown in Figure 4.4.24. Actually, only the cases when ⇡ = (g1, g2)
and ⇡0 = h or ⇡ = g and ⇡0 = (h1, h2) are needed for our purposes. We derive these
cases for (�⇡,⇡0)x in Figures 4.4.25 and 4.4.26 respectively, while leaving to the reader
to see that the same argument also allows to prove the general case, by a double
induction on the lengths of ⇡ and ⇡0. Then, the expression for (�⇡,⇡0)x follows, being
the inverse of that for (�⇡,⇡0)x.

x x

x x

x x

1j0 1j0

x x

x x

x x

x x

1j0 1j0

x x

x x

x x

1j0 1j0
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x x
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x x

1j0 1j0

x x

x x

1j0 1j0

x x

hx hx hx hx hx

hx hx hx hx
hxgx

2gx
1

gx
2gx

1 gx
2gx

1 gx
2gx

1 gx
2gx

1

gx
1 gx

2 gx
1 gx

2 gx
1 gx

2 gx
1 gx

2 gx
1 gx

2

(q14)
(q4)

(q1)
(q4)
(q2)

(a5)

(s1)

(s4)

(a1-3)

(a2-4′) (s2 ′)
(r7)

(p3)

(p3)
(q2)

(s2′-4)

Figure 4.4.25. Deriving (�(g1,g2),h)x (x 2 G(i0, j0)) [a/123, p/134, q/148-157,
r/132, s/123-125]
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1 hx
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1 hx
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(q4)
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(q4)
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(q11)
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(q2)
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Figure 4.4.26. Deriving (�g,(h1,h2))x (x 2 G(i0, j0)) [a/123, f/129-134 q/148-151,
r/134, s/123-125]
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Now, using the form of (�⇡,⇡0)x in Figure 4.4.24, the preservation of (b4-4 0)
follows from the special cases of (q14) for ↵x,x and ↵1j0 .

We continue with the bi-algebra axioms in Table 4.1.1. The only non-trivial ones
are (a1), (a2) and (a5) when g or h are in G(j0, i0). In this case, (a1) and (a2) follow
directly from the definition of (�g)x in the rightmost diagram in Figure 4.4.13. The
proof of (a5) for g 2 G(j0, i0) and h 2 G(i0, i0) is presented in Figure 4.4.27. For
di↵erent choices of g and h we have analogous or simpler proofs.

(a5)(a3)
(p4)

gxhx gxhx

gx hx

gxhx gxhx

gx hx

gxhx gxhx

gx hx

Figure 4.4.27. x preserves (a5) for g 2 G(j0, i0) and h 2 G(i0, i0) (x 2 G(i0, j0))
[a/123, p/134]

From the antipode axioms in Table 4.1.1 the only non-trivial ones are (s1) and
(s1 0) for g 2 G(j0, i0). Figure 4.4.28 proves the preservation of (s1) in this case, while
the proof for (s1 0) is obtained by symmetry.

gx

gxgx

gx

gxgx

2

gxgx gxgx

gx gx

(p14) (a3)
(p4)

(s1)

Figure 4.4.28. x preserves (s1) for g 2 G(j0, i0) (x 2 G(i0, j0)) [a/123, p/134-
140, s/123]

The integral axioms in Table 4.1.8 are trivially preserved because (mg,h)x =
mgx,hx and (�1i)

x = �1x
i
.

Also the ribbon axioms in Table 4.2.1 are trivially preserved, while the only
non-trivial cases in Table 4.2.13 are (r8) when g 2 G(j0, i0) and (r9) with g 2 G(i, j)
and h 2 G(k, l) such that some of i, j are equal to i0 and some of k, l are equal to j0

or vice versa. Figure 4.4.29 deals with the above-metioned case of (r8). Some of the
cases of (r9) are presented in Figure 4.4.30 (cf. expression of (�i,j)x on page 156)
and the others are analogous. This concludes the proof of the functoriality of x.

At this point, thanks to the functoriality of x, the validity of identity (q15),
already known from Lemma 4.4.10 for F being an elementary morphism, extends to
any other morphism F . This gives the naturality of ⇠x,y stated in point (c).

Finally, we observe that the definition x on the elementary morphisms of Hr(G)
which do not involve i0 or j0 coincides with the formal extension of x (cf. Figures
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gxgx

gx gx
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gxgx

(p5) (p4)(r8)
(r5-5′)

Figure 4.4.29. x preserves (r8) when g 2 G(j0, i0) (x 2 G(i0, j0)) [p/134, r/132-
134-140]

gx hx

hx gx hx gx

hxgx

i = j = i0 and k = l = j0

gx hx

hx gx hx gx

hxgx

i = j = j0andk = l = i0

i = k = i0 and j = l = j0

(r9)

gx hx

hx gx

gx hx

hx gx

(p13)

(r9)
(p4)

= l = i0i and j = k = j0

hx gx

hxgxhx

(r9)

(p5)

gx

hx gx

(a3)

Figure 4.4.30. x preserves (r9) (g 2 G(i, j), h 2 G(k, l), x 2 G(i0, j0)) [p/134-
140, r/140]

4.4.13 and 4.4.14). This fact together with Proposition 4.4.1 (d) imply points (a)
and (b) of the statement. ⇤

Proposition 4.4.12. For x = (i0, j0) 2 Gn, the following diagram commutes.

Kn

Kn

Φn

Φn

Hr
n

Hr
n

x x

Proof. We remind that both functors x : Kn ! Kn and x : Hr
n ! Hr

n are the
identities when i0 = j0. Moreover, when i0 6= j0, they still leave unchanged diagrams
and Kirby tangles where no label i0 occurs, while they just replace any label i0 with
j0 in the diagrams and Kirby tangles where no label j0 occurs.

This shows that �n(F x) = �n(F )x when x = (i0, i0) or F 2 Hr
n is an elementary

morphism which does not contain at least one of the labels i0 or j0. Therefore, it
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remains to check such identity for elementary morphisms F 2 Hr
n that contain both

i0 and j0 with i0 6= j0.
The cases F = �(j0,i0), S(j0,i0), S(i0,j0) can be checked directly by comparing the

�n(F )x’s in Figures 2.3.14 and 2.3.16 with the definitions of (�(j0,i0))
x, (S(j0,i0))

x

and (S(i0,j0))
x (see Definition 4.4.9 and Figure 4.4.13).

When F = �(i,j),(k,l) or F = �(k,l),(i,j) with some of k, l equal to i0, we observe
that the copairings which appear in F x (see Definition 4.4.9 and Figure 4.4.14) have
the e↵ect of pulling the strings labeled i0 above the ones labeled j0 in �n(F ) (cf.
Figure 4.3.7), obtaining this way �n(F )x. For example, Figure 2.3.15 depicts the
�n(F )x’s corresponding to the F x’s on the left of the arrows in Figure 4.4.30.

In all the other cases, no corrections occur in Definition 4.4.9 of F x and also
�n(F )x di↵ers from �n(F ) only for the replacement of labels i0 with j0, since �n(F )
admits a strictly regular planar diagram where the paths labeled i0 pass over the
ones of label j0. ⇤

4.5. The stabilization and reduction functors "X and #X

Based on the results of the previous section, we are now ready to define the
reduction functors in the context of the universal algebraic categories. This will be
done in a way completely analogous to what we did in Section 2.3 for Kirby tangles,
even if we will continue to work in the more general framework of Hopf algebras
over an arbitrary groupoid.

We remind that to any (small) category we can associate an oriented graph whose
vertices are the objects of the category and whose edges are its morphisms/arrows.
We will use the same notation for the category and its graph.

Definition 4.5.1. Let G ⇢ G0 be a (strict) full inclusion of groupoids such that
the quotient G0/G of the graph of G0 by the one of G is connected. Then a sequence
X = (xn, . . . , x1) 2 ⇧(G0�G) will be called a spanning sequence for the pair (G0,G)
if its image (xn, . . . , x1)/G ⇢ G0/G forms a spanning tree for G0/G with all edges
oriented towards the root and (xi, . . . , x1)/G ⇢ G0/G is still a tree for each i < n.

Given a full inclusion of groupoids ◆ : G ! G0 and a spanning sequence X for
(G0,G), let ⌥X = ⌥◆ : Hr(G) ! Hr(G0) denote the faithful functor induced by ◆ (cf.
Proposition 4.2.14).

Proposition 4.5.2. Let G ⇢ G0 be a full inclusion of groupoids and X =
(xn, . . . , x1) be a spanning sequence for (G0,G). Then, the map:

"X H⇡ = HX ⇧H⇡ for any H⇡ 2 ObjHr(G) ,

"X F = idX ⇧⌥X(F ) for anyF 2 MorHr(G) ,

defines a functor "X : Hr(G) ! Hr(G0), called the X-stabilization functor. Moreover,
if G0 ⇢ G00 is another full inclusion of groupoids and Y = (ym, . . . , y1) is a spanning
sequence for (G00,G0), then "Y � "X = "Y [X , where Y [X = (ym, . . . , y1, xn, . . . , x1)
is a spanning sequence for (G00,G).

Proof. All statements are straightforward. ⇤
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We remind that the definition of the comultiplication can be extended to �⇡ :
H⇡ ! H⇡ ⇧H⇡ for any ⇡ 2 ⇧G (see Figure 4.5.1) in the following way:

�⇡ = �⇡0⇧⇡00 = (id⇡0 ⇧ �⇡0,⇡00 ⇧ id⇡00) � (�⇡0 ⇧�⇡00) .

π

ππ

Figure 4.5.1. The comultiplication morphism �⇡ in Hr(G)

Definition 4.5.3. Given a full inclusion of groupoids G ⇢ G0 and a spanning
sequence X = (xn, . . . , x1) for (G0,G), we say that a morphism F : HX ⇧ H⇡0 !
HX ⇧H⇡1 in Hr(G) is X-reducible if it is equivalent to one in the form

F = (idX ⇧G) � (�X ⇧ id⇡0) ,

for some morphism G : HX ⇧H⇡0 ! H⇡1 in Hr(G0) (see Figure 4.5.2).

X

X

π1

π0

∈G Hr(G′)

Figure 4.5.2. The generic X-reducible morphism F 2 Hr
X(G0)

The composition of two X-reducible morphisms is still X-reducible (by the coas-
sociativity) and we denote by Hr

X(G0) the subcategory of Hr(G0), whose objects are
HX ⇧H⇡ with H⇡ 2 ObjHr(G0) and whose morphisms are X-reducible morphisms.

Analogously to the categories of reducible Kirby tangles and reducible rib-
bon surface tangles, also MorHr

X(G0) can be endowed with a product structure
⇧⇧ : MorHr

X(G0)⇥MorHr
X(G0) ! MorHr

X(G0) as follows. The product of two morphisms
F = (idX ⇧G) � (�X ⇧ id⇡0) and F 0 = (idX ⇧G0) � (�X ⇧ id⇡00) of Hr

X(G0) is defined
by (see Figure 4.5.3)

F ⇧⇧ F 0 = F � (idX ⇧ �⇡01,⇡0) � (F 0 ⇧ id⇡0) � (idX ⇧ ��1
⇡00,⇡0

)

= (idX ⇧G ⇧G0) � (�X ⇧ �X,⇡0⇧ id⇡00) � (�X ⇧ id⇡0⇧⇡00) .

X π1

∈G Hr(G′) ∈G Hr(G′)

X π0

π′
1

π′
0

′

Figure 4.5.3. The product F ⇧⇧ F 0 of two morphisms in Hr
X(G0)
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The coassociativity property of � implies the associativity of ⇧⇧ , while idX is
its unit. Observe also that ⇧⇧ does not define a monoidal structure on Hr

X(G0), since
it does not intertwine with the composition.

Proposition 4.5.4. Given a full inclusion of groupoids G ⇢ G0 and a span-
ning sequence X for (G0,G), we have "X Hr(G) ⇢ Hr

X(G0). Moreover, for any two
morphisms F, F 0 2 Hr(G), we have "X(F ⇧ F 0) = "X F ⇧⇧ "X F 0. In particular, ⇧⇧
induces a monoidal structure on "X Hr(G).

Proof. Figure 4.5.4 shows that the X-stabilization of a morphism F 2 Hr(G) is
X-reducible, in other words "X Hr(G) is a subcategory of Hr

X(G0). The rest of the
statement is straightforward. ⇤

X

X

π1

π0

F

X

X

π1

π0

F
(a2 ′)

Figure 4.5.4. Stabilizations are reducible [a/123]

Our goal is to prove that "X : Hr(G) ! Hr
X(G0) is actually an equivalence of

categories. Like we did in Section 2.3 for Kirby tangles, we will show this by defining
a reduction functor #X : Hr

X(G0) ! Hr(G) which, up to natural equivalence, is the
inverse of the stabilization functor. We first consider the case when the spanning
sequence X consists of a single element x 2 G0, that is X = (x). In this case, we use
the simplified notations Hr

x(G0) = Hr
(x)(G0), "x = "(x) and #x = #(x).

Definition 4.5.5. Let G be a groupoid. Given x 2 G(i0, j0) with i0 6= j0,
considered as a spanning sequence for (G,G\i0), we define the elementary reduction
functor #x : Hr

x(G) ! Hr(G\i0), by putting

#x(Hx ⇧H⇡) = H⇡x

for any object Hx ⇧H⇡ of Hr
x(G), and (see Figure 4.5.5)

#x F = ("1j0
⇧ id⇡x

1
) � F x � (⌘j0 ⇧ id⇡x

0
) = Gx � (⌘j0 ⇧ id⇡x

0
)

for any morphism F = (idx ⇧ G) � (�x ⇧ id⇡0) : Hx ⇧ H⇡0 ! Hx ⇧ H⇡1 . Here, x :
Hr

x(G) ! Hr(G\i0) is the restriction of the functor defined in Proposition 4.4.11.
Given a full inclusion G ⇢ G0 of groupoids and a spanning sequence X =

(xn, . . . , x1) for (G0,G), the reduction functor #X : Hr
X(G0) ! Hr(G) is defined

as the composition #X = #x1
� . . . � #xn

of elementary reduction functors. Observe
that the composition is well-defined, since if xn 2 G(in, jn) then (xn�1, . . . , x1) forms
a spanning tree for (G0)\in.

π1

π0
x

x

Gx Gx

πx
1

πx
0

πx
1

πx
0

↓x

(a2)

G

Figure 4.5.5. The reduction functor #x [a/123]

– 167 –



Lemma 4.5.6. For any x 2 G(i0, j0), the reduction #x : Hr
x(G)! Hr(G\i0) is

a functor such that #x � "x = idHr(G\i0), while "x � #x ' idHr
x(G) up to the natural

equivalence ⇠x = ⇠x,1i0 . Therefore, #x and "x are category equivalences between
Hr

x(G) and Hr(G\i0).

Proof. That #x is well-defined functor follows from the identity

("1j0
⇧ idj0⇧ idj0) � (�1j0

⇧ idj0)��1j0
� ⌘j0 = ⌘j0⇧ ⌘j0

and from the functoriality of the map x.
Looking at Figure 4.5.5, we see that #x � "x = idHr(G\i0). Indeed, if the leftmost

diagram in the figure comes from the stabilization of a morphism in Hr(G\i0) as
in Figure 4.5.4, we have ⇡0

x = ⇡0, ⇡1
x = ⇡1 and Gx = G by Theorem 4.4.11 (b).

Hence, we end up with the rightmost diagram that represents ("1j0
�⌘j0)⇧G = G by

(a8) in Table 4.1.1. Finally, Figure 4.5.6 shows that ⇠x gives a natural equivalence
"x � #x ' idHr

x(G). ⇤

G

G

Gx

π1
x

x
π0

π1

π0
x

x

x
π0

π1
x

x

x1i0

x1i0

1i0 x 1i0

Gx

x
π0

π1
x

x 1i0

x1i0

Gx

x
π0

π1
x

x 1i0

x1i0

(q15) (q1-2)
(a1)

(a2 ′)

(s3)

(s1)

Figure 4.5.6. The natural equivalence ⇠x : "x � #x ' idHr
x(G) (x 2 G(i0, j0))

[a/123, s/123-125, q/148-157]

Proposition 4.5.7. Given a full inclusion of groupoids G ⇢ G0 and a spanning
sequence X = (xn, . . . , x1) for (G0,G), the reduction #X : Hr

X(G0) ! Hr(G) is a
functor such that #X � "X = idHr(G), while there is a natural equivalence ⇠X :
"X � #X ' idHr

X(G), inductively defined by ⇠(x1) = ⇠x1 and

⇠X = ⇠xn � (idxn ⇧ ⇠Y )

with Y = (xn�1, . . . , x1). Therefore, #X and "X are category equivalences between
Hr

X(G0) and Hr(G).

Proof. We proceed by induction on n. For n = 1 the statement follows from
the previous lemma. For n > 1, we have "X = "xn

� "Y and #X = #Y � #xn
with

Y = (x1, . . . , xn�1). Then, taking into account that "X Hr(G) ⇢ Hr
X(G0), by the

induction hypothesis we have

#X � "X = #Y � #xn
� "xn

� "Y = #Y � "Y = idHr(G) .

Moreover, for any F 2 Hr
X(G) we can write "X #X F = idxn ⇧ ("Y #Y (#xn

F )), which
induces a natural equivalence idxn⇧⇠Y : "X�#X ' "xn

�#xn
. Then, by composing with

⇠xn : "xn
� #xn

' idHr
xn(G), we get the natural equivalence ⇠X : "X � #X ' idHr

X(G). ⇤
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Next proposition specializes the results above to the case when G = Gk, G0 = Gn

and X = ⇡n99)k = ((n, n � 1), . . . , (k + 1, k)), with n > k � 1. In this case, we
will use a notation analogous to the one introduced in the context of the categories
of Kirby tangles. In particular, we put "n

k = "⇡n99)k
, #n

k = #⇡n99)k
, ⇠n99)k = ⇠⇡n99)k and

Hr
n99)k = Hr

⇡n99)k
(Gn). Then we have the stabilization and reduction functors:

"n
k = "n

n�1 � . . . � "k+1
k : Hr

k ! Hr
n and #n

k = #k+1
k � . . . � #n

n�1 : Hr
n99)k ! Hr

k .

Proposition 4.5.8. For any n > k � 1, the reduction #n
k : Hr

n99)k ! Hr
k and

the restriction of the stabilization "n
k : Hr

k ! Hr
n99)k are category equivalences such

that #n
k � "n

k = idHr
k

and ⇠n99)k : "n
k � #n

k ' idHr
n99)k

is a natural equivalence. Moreover,
we have the following commutative diagrams.

↑n
k↑n

k

Kn

Hr
k

Φn

Φk

Hr
n

Kk

Hr
n k Kn k

↓n
k ↓n

k

Hr
k

Φn

Φk

Kk

Proof. The first part of the statement is just a special case of Propositions 4.5.4
and 4.5.7. The commutativity of the diagrams immediately follows from the defini-
tions of the stabilization and reduction functors on both categories and Proposition
4.4.12. ⇤

4.6. The functors  n : Sn ! Hr
n

We remind that in Section 3.3 it was defined a functor ⇥n : Sn ! Kn from
n-labeled ribbon surface tangles to n-labeled Kirby tangles. The goal of this section
is to show that ⇥n factorizes through the functor �n : Hr

n ! Kn introduced in
Section 4.3. Namely, we will construct a functor  n : Sn ! Hr

n such that ⇥n =
�n � n. Moreover, we will show that the restriction  n : Sc

n ! Hr,c
n is well-defined

and full for any n � 4. This fact will allow us to prove the equivalence of the
categories Sc

n, Kc
n and Hr,c

n for any n � 4 and the equivalence between Kc
n and Hr,c

n

for any n � 1.

First of all, we observe that the objects of Sn correspond to sequences of trans-
positions in �n, i.e. unordered pairs of di↵erent indices, while the objects of Hr

n

correspond to sequences of morphisms in Gn, i.e. ordered pairs of indices. Hence,
any functor Sn ! Hr

n would require a choice of an ordering of the indices.

Theorem 4.6.1. For any strict total order � on the set of objects of Gn with
n � 2, there exists a braided monoidal functor  �n : Sn ! Hr

n, such that:

(a)  �n restricts to a monoidal functor  �n : Sn!k ! Hn!k for any 1  k < n;

(b) if �0 is another strict total order on the set of objects of Gn, there is a natural
equivalence ⌧ :  �n !  �

0
n , which is identity on the empty set;
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(c) the following diagram commutes

Sn Kn
Θn

ΦnΨn

Hr
n

where  n =  <
n with < being the natural order on ObjGn.

Proof. Given a strict total order � on ObjGn, we define inductively  �n : Sn !
Hr

n on the objects according to the identities:

 �n (J(i j)) = H(i,j) for any i, j 2 ObjGn with i � j ,

 �n (J�) =  �n (J�0) ⇧ �n (J�00) for any � = �0 ⇧ �00 2 ⇧�n .

Moreover, given another order �0 on ObjGn, we consider the invertible mor-
phisms ⌧� :  �(J�) !  �

0
(J�) with � 2 ⇧�n uniquely determined by:

⌧(i j) =

⇢
id(i,j) : H(i,j) ! H(i,j) if i � j and i �0 j

T(i,j) : H(i,j) ! H(j,i) if i � j and j �0 i
,

⌧� = ⌧�0 ⇧ ⌧�00 for any � = �0 ⇧ �00 2 ⇧�n .

On the morphisms of Sn we define  �n as follows. Figures 4.6.1 and 4.6.2 describe
the images under  �n of any labeling of the elementary morphisms from (a) to (g)
in Figure 3.1.1, while the image of any labeling of the ribbon surface tangle (g 0) in
the same Figure 3.1.1 is defined through relation (I6) in Figure 3.1.2.

(i j) (i j) (i j)

(i j) (i j) (i j)

(i′j′) (i′j′)

(i′j′) (i′j′)

(i,j)

(i,j) (i,j)

(i,j)(i′,j′)

(i′,j′) (i,j)

(i,j)(i′,j′)

(i′,j′)

(i j) (i j) (i j) (i j)

(i j) (i j) (i j)

(i,j) (i,j)

(i,j) (i,j)

(i,j)

1

(i,j)

(i,j)

−1

(i j) (i j) (i j)

(i j) (i j) (i j)

(i,j)

(i,j)

(i,j) (i,j)

(i,j) (i,j)

Figure 4.6.1. The functor  �
n – I (i � j, i0 � j0)
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(i j)

(i j)

(j k)

(j k)

(i k)

(i k)

(i j)(i j) (j k)

(j k)

(j k)(j k) (i j)

(i j)

(i k)

(i k)(i k)

(i k)

(i,j) (j,k)

(i,k)

(j,k)

(i,j)

(i,j)

(i,k)

(j,k)

(i,j)

(i,k) (i,k)

(j,k)

(i,j)

(j,k) (i,k) (i,j)(j,k)

(i,k)

(h l)

(i j)

(i j) (i,j)

(i,j)

(h,l)

1

(i,j)

(i,j) (i,j)

(i j)

(i j) (i j)

Figure 4.6.2. The functor  �
n – II (i � j � k, h � l and {i, j} \ {h, l} = 6O)

Then, we formally propagate this definition over products and compositions
of elementary morphisms. In order to be well-defined on the level of morphisms,
such propagation has to preserve all the defining relations of Sn. Before checking
that, we observe that for any morphism F : J�0 ! J�1 in Sn represented by a given
composition of products of elementary morphisms, the following diagram commutes.

(F ) (F )

τ

(Jσ0

σ1

τσ0

) (Jσ0)

(Jσ1)(Jσ1)Ψ≺
n

Ψ≺
n

Ψ≺
n

Ψ≺′
n

Ψ≺′
n

Ψ≺′
n

Indeed, the commutativity in the case when F is a elementary morphism can be
easily derived from the relations (t1-3-4-9) in Table 4.2.13, (s5) in Table 4.1.2, (i4)
and (f6-7) in Table 4.1.8, (r4) in Table 4.2.1, (f9-10) and (p1) in Table 4.2.2. On
the other hand, the extension to products is trivial and while that to compositions
is guaranteed by the relation (t3).

Now we show that the formal definition of  �n on iterated products/compositions
of elementary morphisms actually preserves all the defining relations of Sn, that is
the labeled versions of the 1-isotopy moves in Figures 3.1.2, 3.1.3, 3.1.4 and 3.1.5
together with the two ribbon moves in Figure 3.2.3. In doing that, by the commu-
tativity of the above diagram, we can choose the most convenient order � for each
single move.

We notice that move (I6) is trivially preserved, since it was used to define the
images under �n of the morphisms on the left side of it. Analogously, (R2) is trivially
preserved by the definition of  �n .

Most of the other moves essentially rewrite the algebra axioms and the relations
of Hr

n introduced in Sections 4.1 and 4.2. Namely, we have that: (I1), (I7-7 0) and
(I8-9) correspond to the braid axioms in Table 4.1.1; (I18) rewrites the bi-algebra
axiom (a1) in the same Table 4.1.1; (I2-2 0), (I5) and (I16) respectively rewrite
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(f3-3 0), (f4-4 0) and (f1) in Table 4.1.2; (I3-3 0) rewrite the bottom-left duality moves
in Table 4.1.8; (I4-4 0) follow from (f10) in Table 4.2.2; (I10), (I12-12 0) and (I13)
follow from (r2), (r5) and (p1) in Tables 4.2.1 and 4.2.2; (I11) follows from (f5)
and (t1-3) in Tables 4.1.8 and 4.2.13; (I15) follows from (t5) in Table 4.2.13; (I20)
follows from (a6), (s6) and (r4) in Tables 4.1.1, 4.1.2 and 4.2.1; (R1) follows from
(t3) and (t6) in Table 4.2.13, taking into account that T propagates through the
form and the coform, due to (f6-7) in Table 4.1.8 and (f9-10) in Table 4.2.2.

Below we indicate how the verification goes for the remaining moves.

We start with (I19) in Figure 4.6.3. The labeling of this move is unique up
to reordering the indices, while the labelings of other moves present di↵erent cases,
depending on the labels at the ribbon intersections. We will call a ribbon intersection
uni-, bi- or tri-labeled according to the number of di↵erent labels that occur in it.

1

(i,j)

(i,j)

(i,j)

(i,j)

(i,j)

(i,j)

(i,j)

(i,j)

(i,j)

(i,j)

(f7)
(t1)

(f1-2)(t1)
(t1)

(t3-4)

(t1-3)
(r5-5′)

(s1)
(a1-3)

(a2′-4)
(s2)

(s2)

(f3)

(f7)
(f1-2)

Figure 4.6.3. Preservation of (I19) (i � j) [a/123, f/125-129, r/132-134, s/123,
t/140]

(i,j) (i,j) (i,j) (i,j)

(i,j) (i,j) (i,j) (i,j) (i,j) (i,j)

−2

1

(i,j)(i,j)

(i,j)

(i,j)

2

(i,j)

2 2

(r3-5′)

(s2 ′)
(f8)

(t2)
(a3)

(t1-2)
(f7-10)

(f8)

-4)(s2
(f3 ′-6)

(f6)

Figure 4.6.4. Preservation of (I14-14 0) in the uni-labeled case – I (i � j) [a/123,
f/125-129-134, r/132-134, s/123-125, t/140]

(i,j) (i,j)

1

−1

1

1
−1

−11
1

1 1

−1
1

−1

(i,j) (i,j) (i,j) (i,j)

(i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j)

(a3)
(t1-2)
(r5-5′)

(t5) (t5)
(s2′-4)-4)(s2 (s4)

(s4)
(t2)

(a3)
(t1-2)
(r5-5′)

Figure 4.6.5. Preservation of (I14-14 0) in the uni-labeled case – II (i � j)
[a/123, r/132-134, s/123-125, t/140]
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(I14-14 0) for a bi-labeled ribbon intersection are trivial, since they follow from
the braid axioms. For a tri-labeled ribbon intersection they follow directly from
(t3-6) and (t7) in Table 4.2.13. Figures 4.6.4 and 4.6.5 deal with the uni-labeled
case. More precisely, Figure 4.6.4 shows that the image under  �n of the labeled
ribbon surface tangle in the middle of (I14-14 0) is equivalent to the third graph
diagram in Figure 4.6.5.

(I17) for a bi-labeled ribbon intersection reduces to a crossing change, so it
follows from axioms (r9) in Table 4.2.13. The tri- and uni-labeled cases are presented
in Figures 4.6.6 and Figure 4.6.7 respectively.

−1 −1

1
1

1 1

(i,j) (j,k)

(j,k) (i,k) (j,k) (i,k) (j,k) (i,k) (j,k) (i,k)

(i,j) (j,k) (i,j) (j,k) (i,j) (j,k)

(t5)

−1

(j,k) (i,k)

(i,j) (j,k)

11

(r9)
(p3)

(s2′-4)
(f5′-11)

(a3)
(p9)

Figure 4.6.6. Preservation of (I17) in the tri-labeled case (i � j � k) [a/123,
f-p/134, r/140, s/123-125, t/140]

11

1 1

11

−1

(i,j) (i,j) (i,j) (i,j) (i,j) (i,j)(i,j)(i,j)

(i,j) (i,j) (i,j) (i,j)(i,j)(i,j)(i,j)(i,j)

1

1

11

−1

11

(i,j) (i,j) (i,j) (i,j) (i,j) (i,j)(i,j)(i,j)

(i,j) (i,j) (i,j) (i,j)(i,j)(i,j)(i,j)(i,j)

(t3-4) (a1)

(r5 ′)

(p9)
(t1-2)

(a1)

(s2)

(s2 ′)

(r5)

(p4)

(p9 ′)
(t1-2)

(p4)

(p3)

(t1-2)

(t3-4)

(r5-5′)
-4)(s2

(s2′-4)

(a3)

(a5)
(s3)
(r7)

(r5 ′)

(t3)
(t1-2)

(r5 ′)
(p5)

(p9)
(t2)

(t1-3)

(p13)
(t5)

Figure 4.6.7. Preservation of (I17) in the uni-labeled case (i � j) [a/123,
p/134-140, r/132-134, s/123-125, t/140]

(I21) for bi-labeled ribbon intersection is trivial, while for tri-labeled ribbon
intersection, with the proper choice of the order � , it corresponds to the bi-algebra
axiom (a5) in Table 4.1.1. The uni-labeled case is treated in Figure 4.6.8.
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11

1

1
11

1

1

1

−1 11

1

11

(t5)
(a1-3)
(t3-4) (s4)

(a1-3)
(r5-5′)

(a3) (a5)

(a3)

(a5)
(t3-4)

(r5-5′)

(s4)
(a1-3)

(i,j) (i,j) (i,j)(i,j) (i,j)(i,j) (i,j)(i,j)

(i,j)(i,j) (i,j)(i,j) (i,j)(i,j) (i,j)(i,j)

(i,j) (i,j) (i,j) (i,j) (i,j)(i,j) (i,j) (i,j)

(i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j)

(f5′-11)(p5)

(s2)
(r5)

(p9 ′)
(t2)

(t1-3)

(p5)

(s2)
(r5)

(p9 ′)
(t2)

(t1-3)

(f5′-11)
(r9)

Figure 4.6.8. Preservation of (I21) in the uni-labeled case (i � j) [a/123,
f/129-134, p/134, r/132-134-140, s/123-125, t/140]

(I22) is the most complicated relation to deal with, since the source of the
involved morphisms consists of three intervals which can be labeled independently
from each other, so there are many di↵erent cases. First of all, we observe that the
presence of disjoint labels allows us to simplify the relation by using move (R2) in
Figure 3.2.3 to remove the bi-labeled ribbon intersections. In particular, when one
of those labels is disjoint from both the other two, such simplification reduce (I22)
to (I16) and (I20) modulo (I2-2 0), (I3-3 0), (I5) and (I8). Up to conjugation, the
only remaining labelings of the three intervals that include a pair of disjoint labels,
are given by the sequences ((i j), (i k), (k l)) and ((i j), (k l), (i k)) where i, j, k, l are

(j,k) (j,k) (j,k)

(i,j) (i,k) (i,l) (i,j) (i,k) (i,l) (i,j) (i,k) (i,l)

1

(i,j) (i,k) (j,l) (i,j) (i,k) (j,l) (i,j) (i,k) (j,l)

(k,l) (k,l) (k,l)

(a3)
(s1)(r5)

(t1)

(t3-7)

(a3)

(t3-7)
(r5-5′)

(a2 ′)
(r9)

(t3-7)
(r5-5′)

Figure 4.6.9. Preservation of (I22) in the non-trivial cases when a bi-labeled
ribbon intersection occurs, (i � j � k � l) [a/123, r/132-134-140, s/123, t/140]
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all distinct. Assuming i � j � k � l, after simplification the first case corresponds
to the bi-algebra axiom (a3) in Table 4.1.1, while the second one reduces to (I16)
and (I20) as above. Figure 4.6.9 concerns the two remaining cases when a bi-labeled
ribbon intersection occurs (even if there is no pair of disjoint labels in the source).
The rest of the cases are presented in Figures 4.6.10, 4.6.11 and 4.6.12 respectively,
depending on the number of uni-labeled ribbon intersections.

1

2 1

(i,k) (i,k) (i,k) (i,k)

(i,j) (i,k) (i,j) (i,j) (i,k) (i,j) (i,j) (i,k) (i,j) (i,j) (i,k) (i,j)

1

1

(i,j) (j,k)(j,k) (i,j) (j,k)(j,k) (i,j) (j,k)(j,k)

(i,j) (i,j) (i,j)

1

(i,j) (j,k)(i,k)

(i,k) (i,k) (i,k)

(i,j) (j,k)(i,k) (i,j) (j,k)(i,k)

(r5)
(t3-7) (a3)

(t4)

(a3)
(t7)

(s1 ′)

(t1)

(a1-3)
(r5-5′)

(s1 ′)

(t1)

(a1-3)
(r5-5′)

(a3)
(r5 ′)

(t3)
(t4)

(t3-9)
(t3-7)
(r5-5′)

1

Figure 4.6.10. Preservation of (I22) in the cases when one uni-labeled ribbon
intersection occurs (i � j � k) [a/123, r/132-134, s/123, t/140]

1

−1

1 2

1

1

1

2

(i,k) (i,k) (i,k) (i,k) (i,k)

(i,j) (i,j) (j,k) (i,j) (i,j) (j,k) (i,j) (i,j) (j,k) (i,j) (i,j) (j,k) (i,j) (i,j) (j,k)
(a5)

(t8)
(t3-9)

(r5-5′)

(a3)

(a1)

(t1-2)
(s2′-4)

(a3)

(a3)

(s1 ′)
(a2-4) (t8)

(t1-2)

(t3-9)

(r5-5′)

Figure 4.6.11. Preservation of (I22) in the cases when two uni-labeled ribbon
intersections occur (i � j � k) [a/123, r/132-134, s/123-125, t/140]

This completes the proof that  �n is a well-defined functor. Then, its monoidality
is trivial while the desired natural equivalence ⌧ in (b) was defined in the begin-
ning. Moreover, property (a) directly derives from the fact that the image of the
elementary morphism �(i j) in Figure 3.2.4 is exactly �(i,j) for i � j. Finally, the
commutativity of the diagram in (c) can be seen by comparing the definitions of �n
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1

i,j)

1

(i,j) (i,j)

−1

(

(i,j)

1

1

(i,j) (i,j)(i,j)

1

(i,j)

(a5)

(t1)
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(t3)
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(i,j

1

(i,j)

−1
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(a3)
(s4)

(s6)
(s1 ′)

(t5)

(t1-3)

(r5-5′)

−1

(i,j)

(i,j)(i,j) (i,j)

1

(i,j) (i,j)(i,j)

1

(i,j)

(i,j) (i,j)(i,j)

1

(i,j)

(i,j) (i,j)(i,j)

1

(i,j)

(r5)
(p5)

(p9 ′)
(t2-3)

(t1-3)
(r5-5′)

-4)(s2
(a2-4′)

−2

(a3)

(p3)

(t2)
(r5-5′)
(s2′-4)

(a3)

(a4 ′)

(s4)

(p13)

(t2)
(r5-5′)

(p3-4)

(a3)
(p8)
(t1)

(t3-9)
(r5-5′)

Figure 4.6.12. Preservation of (I22) in the uni-labeled case (i � j) [a/123,
f/129-134, p/134-140, r/132-134-140, s/123-125, t/140]

in Section 4.3 (cf. Figures 4.2.17 and 4.3.1) and  n (cf. Figures 4.6.1 and 4.6.2) with
the definition of ⇥n in Section 3.3 (cf. Figures 3.3.17, 3.3.18 and 3.3.19). ⇤

Theorem 4.6.1 with n = 2 and Proposition 4.5.8 imply that there exists a functor
from the category of 1-isotopy equivalence classes of (unlabeled) ribbon surface
tangles S (cf. Section 3) to the universal ribbon Hopf algebra Hr = Hr

1 (over the
trivial groupoid). Observe that the two categories are obviously not equivalent, but
the corollary below allows us to associate to any braided unimodular ribbon Hopf
algebra an invariant of ribbon surface tangles under 1-isotopy moves.
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Corollary 4.6.2. There exists a monoidal functor  : S ! Hr, defined by
 (Jm) = H⇧m on the objects and by Figure 4.6.13 on the elementary morphisms.

1 −1

2

−1

Figure 4.6.13. The functor  : S ! Hr

Proof. Comparing the presentation of the category S in Proposition 3.1.2 with
the one of the category Sn in Proposition 3.2.3, we observe that the the relations of
S2 are just the labeled versions of the relations of S (see Figure 3.2.3). In fact, the
extra relations (R1) and (R2) do not appear in S2 since they involve at least three
di↵erent labels. Therefore, the category S is equivalent to S2, where the equivalence
functor is given by labeling the whole surface by the transposition (1 2). Then, we
put  = #2

1 � 2 and the statement follows from Theorem 4.6.1, Proposition 4.5.8
and the identity in Figure 4.6.14. ⇤

2

2

−1

1

−1

(a3)
(p4)

(1 2)

(1 2)

(1 2)

(2,1)

(2,1)(2,1)

(2,1) (1,1)

(2,1) (2,1)

2

−1

(1,1)

(1,1) (1,1)(1,1) (1,1)

(t1-3)

Ψ2 ↓2
1

Figure 4.6.14. [a/123, p/134, t/140]

4.7. Equivalence between Kc
n and Hr,c

n

According to point (a) of Theorem 4.6.1, we know that the functor  n : Sn !
Hn restricts to a well-defined functor  n : Sc

n ! Hr,c
n , where we use the notation

Sr,c
n = Sr

n99)1 and Hr,c
n = Hr

n99)1. Now we will show that for n � 3 such restriction is full
(cf. Proposition 4.7.3) and this will allow us to complete the proof of the equivalence
of the categories Sc

n, Hr,c
n and Kc

n with n � 4 (cf. Theorem 4.7.4).
We first need two technical lemmas.
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Lemma 4.7.1. Given (i, j) 2 Gn with i 6= j, the identity id⇡n99)1 as a morphism
of Hr,c

n can be represented by a diagram containing a counit vertex "(i,j) and no edge
labeled (k, k) with 1  k  n.

Proof. Since id⇡n99)1 contains id⇡i99)j for n � i � j � 1, it su�ces to prove that
id⇡i99)j can be represented by two diagrams containing "(i,j) and "(j,i) respectively and
no edge labeled (k, k). This is done in Figure 4.7.1. ⇤

(a2 ′)

πi ✮j

πi ✮j

πi ✮j

πi ✮j

πi ✮j

πi ✮j

πi ✮j

πi ✮j

(a6) (s5)

(i,j)
( i)j,

Figure 4.7.1. (i > j) [a/123, s/125]

Lemma 4.7.2. Let F be any morphism of Hr,c
n whose source and target are in

 n(ObjSc
n), i.e. they have the form H⇡n99)1⇧H⇡, with ⇡ = ((i1, j1), . . . , (im, jm)) 2 ⇧Gn

such that ih > jh for h = 1, . . . ,m. If F is given by a composition of products of the
elementary diagrams presented in Figure 4.7.2 with i 6= j 6= k 6= i and i0 6= j0, then
it is in the image of  n.

(i,j)

(i,j) (i,j)

(i,j)(i′,j′)

(i′,j′) (i,j)

(i,j)(i′,j′)

(i′,j′)

(i,j) (i,j)

(i,j) (i,j)

(i,j)

1

(i,j)

(i,j)

−1

(i,j)

(i,j)

(i,j) (i,j)

(i,j) (i,j)(i,j) (j,k)

(i,k)

(i,j)

( i)j,

Figure 4.7.2. (i 6= j 6= k 6= i, i0 6= j0)

Proof. Consider a morphism F as in the statement. We call a label (i, j) in the
diagram good if i > j and bad if i < j. We also call a vertex of the diagram good
if all the labels of the edges attached to it are good and bad otherwise. Observe
that we can transform any comultiplication, counit and any integral vertex into a
good one by applying to it, if necessary, the moves in Figure 4.7.3. Therefore, we
can assume that any bad vertex of the diagram is a multiplication vertex.

(i,j) (i,j)

(i,j)

(i,j) (i,j)

(i,j)

(t4)

(i,j) (i,j)

(s5)
(r4)
(t1)

(i,j) (i,j)

(i4)
(p1)
(t1)

Figure 4.7.3. (i < j) [i/129, p/134, r/132, s/125, t/140]

Now, consider the diagram of F as a planar diagram of a graph in which each
edge e is weighted by an integer and decorated by a certain number n(e) of T ’s.
We observe that the T ’s can be slided along the edges by using the braid axioms in
Table 4.1.1 and the moves in Figure 4.7.4. Then, we can always assume n(e) = 0, 1,
since move (t3) in Table 4.2.13 allows us to eliminate any two T ’s along the same
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edge, once they are slided next to each other. If both the ends of an edge e have
good (resp. bad) labels, then n(e) = 0 and the entire edge e has a good (resp. bad)
label. In the bad case, we insert two T ’s along e by (t3) and slide them near to the
ends of e. On the contrary, if the labels at the ends of an edge are one good and
the other bad, then there is exactly one T along e and we slide it near to the badly
labeled end.

(i,j)

n n

(i,j)(i,j)

(t1)

(t1)
-3)(r2

(i,j) (t1)

(t1)
(f7-10)

(i,j) (i,j)

(t1)

(t1)
(f6-9)

( i)j,( i)j, ( i)j, ( i)j,

( i)j, ( i)j,

Figure 4.7.4. (i 6= j) [f/129-134, r/132, t/140]

After that, any bad label in the diagram is confined to a small arc between a T
and a bad multiplication vertex. Taking into account the definition of  n in Figures
4.6.1 and 4.6.2, we see that such a diagram is a composition of products of diagrams
each of which is the image of an elementary morphism under the monoidal functor
 n. Therefore, F itself is in the image of  n. ⇤

Proposition 4.7.3. The functor  n : Sc
n ! Hr,c

n is full for any n � 3.

Proof. Let F be a morphism of Hr,c
n whose source and target are in  n(ObjSc

n).
We represent F by a diagram which does not use the copairing and form/coform
notation. This is possible, since those morphisms are defined in terms of the other
elementary morphisms.

Then an edge of the diagram will be called an i-edge, 1  i  n, if it is labeled
(i, i) and if it does not join a multiplication and a cointegral vertex (cf. Figure
4.7.5). Moreover, a vertex will be called an i-vertex if it is not cointegral vertex and
all edges attached to it are labeled (i, i). In the figures below we will indicate i-edges
by thinner lines and i-vertices by empty triangles.

(i,j) ( i)j,

(i,i)

Figure 4.7.5. Not an i-edge

As a preliminary step, we will show how to transform the diagram representing
F into an equivalent one, where no i-vertices and i-edges appear for any 1  i  n.
Actually, the figures below deal only with edges of zero weight and not containing
antipodes, but the generalization to other weights or to the presence of the antipodes
is straightforward. Observe also that since n � 2, according to Lemma 4.7.1 we may
assume that the diagram of F contains a counit "(i,j) with j 6= i. Moreover, through
isotopy moves such counit can be moved near any given i-edge.

We start by eliminating all uni-valent i-vertices as described in Figure 4.7.6.
Then by applying, if necessary, the edge breaking shown in Figure 4.7.7, we obtain
a diagram where all i-edges connect two tri-valent vertices such that at most one of
them is an i-vertex. In particular, no i-edge connects two comultiplication vertices.
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(a6) (i2 ′) (s1 ′)

(i,j) (i,j)

(i,j)

(i,j) (i,j) (i,j) (i,j)(i,i)

( i)j,

(i,i)

(i,i) (i,i) (i,i)(i,i)

Figure 4.7.6. Eliminating the uni-valent i-vertices (i 6= j) [a-s/123, i/129]

(a1)

(a1 ′)
(s1 ′)

(i,i) (i,i)

(i,i) (i,i)

(i,j)

(i,j)

Figure 4.7.7. Breaking an i-edge (i 6= j) [a-s/123]

We proceed by eliminating the tri-valent i-vertices, first the comultiplication
ones by the leftmost move in Figure 4.7.8 and then the multiplication ones by using
the two other moves in the same figure (or their vertical reflections).

(a5) (a3) (a3)

(i,j) (i,j) (i,j) (i,j) (i,j) (i,j)( i)j, ( i)j, ( i)j,( i)j,(i,i) (i,i) (i,i) (i,i) (i,i) (i,i)

(i,i) (i,i) (i,i) (i,i) (i,i) (i,i)(i,j) (i,j)

Figure 4.7.8. Eliminating tri-valent i-vertices (i 6= j) [a/123]

At this point the only remaining i-edges connect two multiplication tri-valent
vertices none of which is an i-vertex. Such edges are eliminated through the moves
shown in Figure 4.7.9 (or their vertical reflections). For the move on the right side,
by applying Lemma 4.7.1 in the case n � 3, we assume that there is close by a
counit of label (j, k) with i 6= j 6= k 6= i.

(i,j (i,j) (i,j) (i,j) (i,j)( i)j, ( i)j, ( i)j, ( i)j,(i,j)

(i,j) (i,j)(i,k) (i,k)

(j,k) (j,k)(i,k)(i,k))

(a3)

(a3)

(a2 ′)
(a4 ′)
(s1 ′)

Figure 4.7.9. Eliminating i-edges between two tri-valent vertices none of which
is an i-vertex (i 6= j 6= k 6= i) [a-s/123]

This gives a diagram, where any edge labeled (i, i) is attached to one multiplica-
tion tri-valent and one cointegral vertex as in Figure 4.7.5 where i 6= j. By using the
form notation (f2) in Table 4.1.8, we can eliminate those exceptional edges as well,
leaving only labels of the type (i, j) with i 6= j. Finally, we express all antipodes in
terms of T ’s and ribbon morphisms through the moves (t1-2) in Table 4.2.13.

In the end, the resulting diagram of F is a composition of products of the
diagrams in Figure 4.7.2 and the proposition follows from Lemma 4.7.2.
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We note that the images of the uni-labeled ribbon intersections do not appear.
This is because any ribbon surface tangle is equivalent to one which does not contain
such ribbon intersection. ⇤

Theorem 4.7.4. For any n � 4, we have the following commutative diagram
of equivalence functors:

Θn

ΦnΨn

Sc
n Kc

n

Hr,c
n

Proof. Observe that the commutativity of the diagram has already been estab-
lished in Theorem 4.6.1 (c). Moreover, Theorem 3.6.4 tells us that ⇥n is a category
equivalence for n � 4. Then, for n � 4 the functor  n is faithful. On the other hand,
it is also full, by Proposition 4.7.3.

Therefore, according to Proposition 1.5.3, to conclude that  n is a category
equivalence, and hence so is �n, it is enough to prove that for any object H⇡n99)1⇧H⇡ 2
ObjHr,c

n with ⇡ = ((i1, j1), . . . , (im, jm)) 2 ⇧Gn an arbitrary sequence, there exists
an isomorphism '⇡ : H⇡n99)1⇧H⇡ ! H⇡n99)1⇧H⇡0 with H⇡n99)1⇧H 0

⇡ 2  n(ObjSc
n), that

is i0k > j0k for k = 1, . . . ,m.
We call an element (il, jl) 2 ⇡ bad if il  jl. Then, we proceed by induction on

the number of bad elements of ⇡. The inductive step is provided by the following
claim: if the number of bad elements in ⇡ is s > 0, then there is an isomorphism
'⇡ : H⇡n99)1⇧H⇡ ! H⇡n99)1⇧H⇡0 , where the number of bad elements in ⇡0 is s� 1.

To prove the claim, suppose that m > 1 and that the first bad element in ⇡ is
(ik, jk). If ik < jk the desired isomorphism '⇡ is given by the product of identity

(ik+1,ik)

(ik,ik)

πn ✮1

πn ✮1 π

π′

ϕπ ϕ−1
π= =

(ik+1,ik) (ik+1,ik) (ik+1,ik)

(ik,ik)

πn ✮1

πn ✮1

π

π′

Figure 4.7.10. Definition of '⇡ when ik = jk < n

ϕπ ϕ−1
π= =

πn ✮1 π

πn ✮1

π′πn ✮1

πn ✮1 π

(n,n−1)

(n,n−1) (n,n)

π′

(n,n−1)

(n,n)

(n,n−1)

Figure 4.7.11. Definition of '⇡ when ik = jk = n.
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morphisms and the antipode applied on the k-th string of H⇡. If ik = jk < n
the isomorphism '⇡ and its inverse '�1

⇡ are presented in Figure 4.7.10, while if
ik = jk = n they are presented in Figure 4.7.11. The identities '�1

⇡ � '⇡ = id⇡ and
'⇡ � '�1

⇡ = id⇡0 directly follow from the axioms (s1-1 0) in Table 4.1.1. ⇤

We are ready now to state the main theorem of this section, proving that the
universal algebraic category Hr = Hr

1 = Hr,c
1 is equivalent to the category of relative

cobordisms of 4-dimensional 2-handlebodies. The elementary diagrams and defining
relations of Hr are collected in Tables 4.7.12 and 4.7.13. Of course, they are simply
the specializations of the ones in Tables 4.1.1, 4.1.8, 4.2.1 and 4.2.13 to the case of
the trivial groupoid G1. In this case, all labels are equal to (1, 1), and are therefore
omitted. Moreover, we remind that in this case the adjoint morphisms ↵ : H⇧H ! H
(resp. ↵0 : H ⇧ H ! H) define the left (resp. right) adjoint action of H on itself,
and the two addition ribbon axioms (r8) and (r9) can be equivalently expressed in
terms of such action as shown in Table 4.7.14 (cf. Proposition 4.4.5).

Theorem 4.7.5. The functor �n : Hr,c
n ! Kc

n is a category equivalence for
any n � 1. In particular, the universal ribbon Hopf algebra Hr is equivalent to the
category Chb3+1 of relative cobordisms of 4-dimensional 2-handlebodies.

Proof. According to Theorem 4.7.4, �n is a category equivalence for any n � 4.
Then, for any 1  n  3 the commutative diagram in Proposition 4.5.8, implies
that �n � #4

n = #4
n � �4, where the reduction functors are known to be category

equivalences by Propositions 2.3.9 and 4.5.7. Therefore �n is a category equivalence
as well. In particular, for n = 1 we obtain that �1 : Hr = Hr

1 ! K = K1 is a
category equivalence. But according to Theorem 2.3.1, K is equivalent to Chb3+1,
hence Hr is equivalent to Chb3+1 as well. ⇤

= =

==

=

= =

=∆ S

Sη

γ

γ L

l

=m

=ε

vn σ= =n
def

(r6)
−1

1
−1

the universal ribbon Hopf algebraElementary fordiagrams Hr = Hr
1

Table 4.7.12.

Remark 4.7.6. The category equivalence established in Theorem 4.7.5 implies
that one can use braided ribbon Hopf algebras to construct sensitive invariants
of 4-dimensional 2-handlebodies. Of course, in order to be able to calculate such
invariants, given a Kirby tangle K : Im0 ! Im1 in K = K1, we need an explicit
form for the morphism FK in Hr such that �1(FK) = K. One such form is given
by FK = #3

1 (SK), where SK was constructed in Section 3.4, while  n and #3
1 were

defined respectively in Section 4.6 and Section 4.5. Of course, such approach requires
a good understanding of all functors used in it, and it is quite long in practice.
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Braid axioms

Antipode axioms

Integral axioms

D

D′ D

D′

(b1)

(b4 ′)

(b3)

D

D

(b4)

(s1) (s1 ′) (s2) (s2 ′)

(a7)(a6)
O

(a5) (a8)

Bialgebra axioms

(a1) (a2 ′)

(a3)

(a2)

(a4 ′)(a4)

D

D

(b2)

−1

(r8) (r9)

−1−1

0
(r1) (r2)

n
m

n
+m

(r3)

n

n

n

n(r4)

n

(r5) (r7)

Ribbon axioms

Axioms for the universal ribbon Hopf algebra Hr = Hr
1

O
(i1) (i2) (i3) (i4) (i5)

Table 4.7.13.
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Left adjoint action in Hr = Hr
1

def
α =

Equivalent form of the (r8)axiom Equivalent form of the (r9)axiom

Table 4.7.14.

We will outline here a simpler procedure for constructing FK , which is less
explicit but works quite well in many concrete examples.

We start by representing K by a strictly regular planar diagram and use the
following objects (and notations) from the indicated steps of the construction of the
surface SK in Section 3.4:

1) the disks D1, . . . , Dr spanned by the dotted unknots of K and the framed link
L = L1 [ . . . [ Ls introduced in step 1;

2) a trivial state for the diagram of the unframed link |L| and the framed link
L0 = L01 [ . . . [ L0s, whose corresponding unframed link |L0| is represented by
that trivial state, together with the family of cylinders F1, . . . , Fl inside which
the trivializing crossing changes take place, all considered in step 3;

3) a family A1, . . . , As of disjoint spanning disks for the components |L01|, . . . , |L0s|
of the trivial link |L0|, as in step 6.

The Aj’s can be assumed to intersect each cylinder Fi as depicted in the left side of
Figure 3.5.1 (disregard the disk Ci). Then, we can extend them by introducing one
clasp inside each Fi, to give a family bA1, . . . , bAs of spanning disks for the original
link |L|. Actually, in doing that we possibly introduce other singularities, which
consist of two double arcs meeting at a triple point along the clasp intersection
for each horizontal subdisk of the Aj’s inside the Fi’s. By suitable finger moves at
the interior of the disks, we can eliminate all the triple points to leave only ribbon
intersections, and then transform each ribbon intersection into a pair of new clasps.

Moreover, we can assume that the bAj’s form with the Di’s only clasp and ribbon
intersections, like in the right side of Figure 3.5.1. Also in this case, each ribbon
intersection can be transformed into a pair of new clasps, by a finger move as above.

Finally, if Lj is the closure of an open framed component in K joining a0mc,ij to
a00mc,ij with c = 0, 1, then we assume that the portion of bAj outside the box K in
Figure 3.4.2 is flat and cut it o↵ (cf. Figure 4.7.15 (a)).
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We still denote by D1, . . . , Dr and bA1, . . . , bAs the disks resulting after the above
modifications, which form only clasp singularities as the ones in Figure 4.7.15 (b).

(a) (b)

root

leaf

Âk

Âj

Â

G

j
Âj

Di

Lj

Lj

Lj

Lk

Âj

Lj

G

GG

G

Figure 4.7.15.

Now, we consider an oriented graph G consisting of a rooted uni/tri-valent tree
embedded in each of such disks. For the tree T inside any disk, we require that (cf.
Figure 4.7.15): the root of T belongs to the boundary of the disk and coincides the
middle point of the segment at the target level if such segment exists (in the case of
a disk Aj); the leaves of T include all the end points of the clasp arcs in the interior
of the disk and the middle point of the segment at the source level if such segment
exists (in the case of a disk Aj); T does not meet the boundary of the disk and the
clasp arcs at any point other than those already mentioned. Moreover, we orient the
edges of T towards the leaves in the case of a disk Di and towards the root in the
case of a disk bAj.

Let G be the oriented graph obtained by adding to G all the clasp arcs as new
oriented edges. The orientation of each new edge goes from the tree of Di to that ofbAj if the corresponding clasp involves such disks, while it is arbitrary otherwise (if
the clasp involves two Aj’s).

At this point, a suitable ambient isotopy of E⇥ [0, 1] fixing E⇥ {0, 1} allows us
to put the oriented graph G in regular position with respect to the projection plane,
in such a way that y-coordinate is increasing along the projection of each oriented
edge, and then to deform the union D1[ . . .[Dr [ bA1[ . . .[ bAs to a narrow regular
neighborhood N of G in it.

1

11

1
−1

−1
−1

FKK

Figure 4.7.16.
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As a result of such ambient isotopy, the original planar diagram of K is trans-
formed into an equivalent planar diagram, which can be easily expressed as a com-
position of expansions of Kirby tangles as in Figures 4.2.17 and 4.3.1, after insertion
of canceling pairs of 1/2-handles.

Then, the morphism FK is given by the analogous product of expansions of the
corresponding elementary morphisms of Hr

1 in the same figures, whose images under
�1 are those Kirby tangles. In particular, each claps intersections between two Aj’s
gives rise to a copairing morphism in FK .

Figure 4.7.16 shows the morphism FK for a very simple Kirby tangle K. This is
represented by the leftmost diagram, where the trivializing crossings are encircled
by a small gray disk. The intermediate diagram represents the regular neighborhood
N of the graph G in the construction above.

– 186 –



5. 3-dimensional cobordisms as boundaries

This chapter is mainly aimed to prove the Kerler’s conjecture (stated in [35]),
that the category of 2-framed 3-dimensional relative cobordisms fCob2+1 admits a
purely algebraic characterization in terms of a universal algebraic category generated
by a Hopf algebra object.

Here, we think of fCob2+1 as the quotient category of Chb3+1
1 modulo 1/2-handle

trading. This point of view provides a canonical monoidal functor Chb3+1
1 ! fCob2+1 ,

through which we will derive the proof of the Kerler’s conjecture from the results of
the previous chapter.

An analogous algebraic characterization will be also given for the category of
3-dimensional relative cobordisms Cob2+1, as the further quotient of fCob2+1 modulo
blowing down/ups.

5.1. The categories of relative cobordisms ggCob2+1
n and Cob2+1

n

We recall from Section 2.1 that the objects of Chb3+1
n have been restricted to be

the standard 3-dimensional 1-handlebodies Mn
⇡ described in Definition 2.1.1, where

n is the number of 0-handles and ⇡ 2 ⇧Gn. To such an Mn
⇡ is associated its front

boundary F n
⇡ = @Mn

⇡ , which is a standard compact oriented surface with marked
(S1

1 t . . . t S1
n)-boundary. In fact, BdF n

⇡ has n components, one for each 0-handle
of Mn

⇡ , and the given numbering of these 0-handles induces the marking of BdF n
⇡

(which depends only on n and not on ⇡).
Moreover, for any morphism W : M0 ! M1 in Chb3+1

n , which is a 4-dimensional
relative 2-handlebody build on X(M0,M1), the front boundary @W can be seen as a
3-dimensional relative cobordism @W : @M0 ! @M1 between surfaces with marked
boundary. Actually, X(M0,M1) itself can be seen as such a 3-dimensional cobordism,
and W represents a relative cobordism, build up with only 1- and 2-handles, between
X(M0,M1) and @W as oriented 3-manifolds with marked boundary.

Now, consider the handle trading and blowing up/down moves on W , whose
description in terms of n-labeled Kirby tangle is given in Figure 5.1.1. These are
nothing else than the labeled versions of the well-known Kirby calculus moves and
like them preserve the boundary of W . In particular, they preserve the 3-dimensional
relative cobordism @W : @M0 ! @M1.

i

i

ii

i

i

i

i

±1

1/2-handle trading blow down/up

Figure 5.1.1. Kirby calculus moves

As discussed in Section 1.2, a 1/2-handle trading changes W into a new 4-dimen-
sional relative 2-handlebody W , which is related to W by a relative 5-dimensional
cobordism of 4-manifolds with marked boundary. Then, 1/2-handle trading also
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preserves the signature of W , i.e. �(W ) = �(W ). According to [6] (cf. [74, 34, 36]),
the extra information given by �(W ) can be interpreted as a 2-framing on @W ,
i.e. a homotopy class of trivializations of TM � TM as a Spin(6) bundle. So, we
can say that 1/2-handle trading preserves @W as a 2-framed 3-dimensional relative
cobordism. On the contrary, a blowing up transforms W into the connected sum
with W #±CP 2, hence it changes the signature by ±1.

In the light of the above considerations, for any n � 1 we define the category of
2-framed 3-dimensional relative cobordisms fCob2+1

n and the category of 3-dimensional
relative cobordisms Cob2+1

n , directly as quotients of Chb3+1
n .

Namely, the objects of both the categories fCob2+1
n and Cob2+1

n are those of Chb3+1
n .

The morphisms of fCob2+1
n are equivalence classes of morphisms of Chb3+1

n under the
equivalence relation generated by 1/2-handle trading, while the morphisms of Cob2+1

n

are equivalence classes of morphisms of Chb3+1
n under the equivalence relation gen-

erated by 1/2-handle trading and blowing down/up.
Notice that composition and product of cobordisms are preserved by 1/2-handle

trading and blow down/up moves, since these take place in the interior leaving
the boundary unchanged. Therefore, fCob2+1

n and Cob2+1
n inherit from Chb3+1

n a strict
monoidal structure, whose product will be still denoted by ⇧ , and we have monoidal
quotient functors

Chb3+1
n ! fCob2+1

n ! Cob2+1
n .

In particular, the categories fCob2+1 = fCob2+1
1 and Cob2+1 = Cob2+1

1 are respec-
tively equivalent to the categories gCob and Cob introduced in [36], admitting the
same presentations in terms of elementary morphisms and relations given for those
categories in Chapter 4 of [36] (cf. [35], where the notation Cob is used for fCob2+1).

The definitions of fCob2+1
n and Cob2+1

n as quotients of Cob3+1
n are enough for our

present aim to prove the equivalence of fCob2+1 and Hr.
Such definitions are motivated by the fact that the classical Lickorish-Rohlin-

Wallace’s theorem [41, 66, 75] asserting that any closed oriented 3-manifold is the
boundary of a 4-dimensional 2-handlebody, and the Kirby calculus [37] relating any
two such handlebodies with di↵eomorphic boundaries, can be adapted to the context
of the 4-dimensional relative 2-handlebody cobordisms in Cob3+1

n . As a consequence,fCob2+1
n and Cob2+1

n can be identified as the categories of all the (2-framed) 3-dimen-
sional cobordisms between surfaces with n-component marked boundary and given 3-
dimensional filling, up to di↵eomorphisms preserving (the 2-framing and) the fillings.
In fact, the case of n = 1 is treated in [36] (cf. comment 1. in 0.4.1 on page 8 of the
same reference for n > 1).

5.2. The quotient categories Kn, Kn, Sn and Sn

We want to define the quotient categories Kn and Kn of Kn corresponding tofCob2+1
n and Cob2+1

n respectively. Before doing that, we see how to eliminate some
redundancy in the 1/2-handle trading and blow down/up moves.

Lemma 5.2.1. Modulo 2-handle sliding, any 1/2-handle trading can be reduced
to one where the involved 1-handle is a canceling one, as in Figure 5.2.2 (a). Modulo
2-handle sliding and 1/2-handle trading, positive and negative blow down/up are
inverse to one another.
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Proof. See Figure 5.2.1. ⇤

(a)

(b)

i

−1

i

1+

i

1+ i

i

1+

i
i

i

i

i

i

i

i

i

i
i
i

i

i

i

i

i

i

i i

i

i

Figure 5.2.1. Proof of Lemma 5.2.1

According to the previous lemma, we define Kn and Kn as follows. The objects
of both Kn and Kn coincide with those of Kn. The morphisms of Kn are equivalence
classes of morphisms ofKn modulo the move in Figure 5.2.2 (a), while the morphisms
of Kn are equivalence classes of morphisms of Kn modulo both moves in the same
Figure 5.2.2.

i

i

i
i

i

i
i

(a) (b)

i

1+

Figure 5.2.2. Additional moves in Kn and Kn

Since the moves in Figure 5.2.2 involve only closed components of the diagram,
they preserve composition and product of n-labeled Kirby tangles. Hence, Kn and
Kn inherit from Kn a strict monoidal structure, whose product will be still denoted
by ⇧ , and we have monoidal quotient functors

Kn ! Kn ! Kn .

Proposition 5.2.2. The equivalence of monoidal categories Kn 5 Chb3+1
n giv-

en by Proposition 2.3.1 induces equivalences of monoidal categories on the quotients
Kn 5 fCob2+1

n and Kn 5 Cob2+1
n .

Proof. This is an immediate consequence of Proposition 2.3.1 and Lemma 5.2.1,
taking into account that the labeled Kirby tangle moves in Figures 5.2.1 and 5.2.2
already interpret 1/2-handle trading and blow down/up under the equivalence of
Kn and Chb3+1

n in Proposition 2.3.1. ⇤

Given n > k � 1, we define the subcategories Kn99)k ⇢ Kn and Kn99)k ⇢ Kn to be
the images of Kn99)k ⇢ Kn under the quotient functors. Since the additional moves
in Figure 5.2.2 involve only uni-labeled components, when applied to a reducible
Kirby tangle K as in Figure 2.3.6, they essentially take place inside the box L.
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Then, Kn99)k and Kn99)k can also be though as quotients of Kn99)k, and we have the
following commutative diagram of inclusion and quotient functors.

Kn99)k ! Kn99)k ! Kn99)k

\ \ \
Kn ! Kn ! Kn

Proposition 5.2.3. For any n > k � 1, the category equivalences "n
k : Kk !

Kn99)k and #n
k : Kn99)k ! Kk given by the stabilization and reduction functors induce

well-defined functors on the quotient categories

"n
k : Kk ! Kn99)k and "n

k : Kk ! Kn99)k ,

#n
k : Kn99)k ! Kk and #n

k : Kn99)k ! Kk .

Moreover, #n
k � "n

k is equal to idKk
(resp. idKk

) while "n
k � #n

k is naturally equivalent
to idKn99)k

(resp. idKn99)k
). Then, "n

k and #n
k are category equivalence.

Proof. By Proposition 2.3.9, #n
k � "n

k = idKk
while "n

k � #n
k is naturally equivalent

to idKn99)k . Therefore, the statement will follow once we show that "n
k and #n

k are well
defined on the quotient categories.

That the stabilization functor "n
k is well defined on the quotients is straightfor-

ward, since by definition "n
k K = idn99)k⇧K for any K 2 Kk.

Concerning the reduction functor #n
k , it has been defined as composition of ele-

mentary reduction functors (cf. Definition 2.3.7). Then, it is enough to consider the
case of #n

n�1. In this case, for any K 2 Kn99)(n�1) we have by definition:

#n
n�1 K = ("(n�1,n�1) ⇧ id

⇡(n,n�1)
1

) �K(n,n�1) � (⌘n�1 ⇧ id
⇡(n,n�1)
0

) ,

where K(n,n�1) is obtained from K by pulling all tangle components labeled n above
the ones labeled n�1 and then changing the label n with n�1 (cf. proof of Lemma
2.3.6). Since both the additional relations in Kk and Kk involve only uni-labeled
sub-tangles, they are obviously preserved by the map K 7! K(n,n�1), hence #n

n�1 K
is well defined, being the composition of K(n,n�1) with fixed tangles. ⇤

Now we define the quotient categories Sn and Sn of the category Sn of n-labeled
ribbon surface tangles, and make some considerations about them analogous to those
made above for Kn and Kn. In the next section, we will establish the relation between
Sn (resp. Sn) and Kn (resp. Kn).

Once again, the objects of Sn and Sn are those of Sn. The morphisms of Sn

are equivalence classes of morphisms of Sn modulo the relation (T) in Figure 5.2.3,
while the morphisms of Sn are equivalence classes of morphisms of Sn modulo both
the relations (T) and (P) in the same Figure 5.2.3. Notice that such moves do not
change the boundary of the ribbon surface tangle up to isotopy.

The moves in Figure 5.2.3 clearly preserve composition and product of n-labeled
ribbon surface tangles, being local in nature. Hence, Sn and Sn inherit from Sn a
strict monoidal structure, whose product will be still denoted by ⇧ , and we have
monoidal quotient functors

Sn ! Sn ! Sn .
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(P)

(i j) (i j)(i j)(i j)(i j)(i j)

(T)

Figure 5.2.3. Additional relations in Sn and Sn

Given n > k � 1, we define the subcategories Sn99)k ⇢ Sn and Sn99)k ⇢ Sn to
be the images of Sn99)k ⇢ Sn under the quotient functors. Thus, we have quotient
functors

Sn99)k ! Sn99)k ! Sn99)k

Proposition 5.2.4. For any n > k � 2 the functor "n
k : Sk ! Sn induces well-

defined functors on the quotient categories, for which we use the same notation:

"n
k : Sk ! Sn and "n

k : Sk ! Sn .

Proof. The statement is straightforward. ⇤

5.3. Equivalences Kc
n 5 Sc

n and Kc
n 5 Sc

n for n � 4

According to the notation introduced in Sections 2.3 and 3.2, we put Kc
n = Kn99)1,

Kc
n = Kn99)1, Sc

n = Sn99)1 and Sc
n = Sn99)1.

In Section 3.3 we defined the functor ⇥n : Sn ! Kn, whose restriction ⇥n :
Sc

n ! Kc
n was shown to be a category equivalence for every n � 4 in Section 3.6

(see Theorem 3.6.4). The goal of this section is to prove an analogous fact for the
quotients introduced in the previous section.

Proposition 5.3.1. For any n � 2 the functor ⇥n : Sn ! Kn induces well-
defined braided monoidal functors on the quotient categories:

⇥n : Sn ! Kn and ⇥n : Sc
n ! Kc

n ,

⇥n : Sn ! Kn and ⇥n : Sc
n ! Kc

n .

Proof. Thanks to Propositions 3.3.2 and 3.3.3, it is enough to prove that if two
ribbon surface tangles S and S0 in Sn are related by a (T) move, then their images
⇥n(S) and ⇥n(S0) in Kn are related by a handle trading, while if S and S0 are related
by a (P) move, then ⇥n(S) and ⇥n(S0) are related by a blow down/up.

i
j

i j

i
j

i j

i
j

i
j

i j

i
j

i j

i
j

i
j

i j

i
j

j

i j

j

i
j

i j

i
j

i j

Figure 5.3.1. The image of move (T) under the functor ⇥n
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i
j

i
j

i j

i
j

i j

i
j

i
j

i j

Figure 5.3.2. The image of move (P) under the functor ⇥n

These facts are shown in Figures 5.3.1 and 5.3.2 respectively. In particular, the
second equivalence in Figure 5.3.1 consists in a handle sliding followed by a 1/2-
handle trading, while a blow down is performed in the last step of Figure 5.3.2. ⇤

Proposition 5.3.2. For any n � 4, the functor ⌅n : K1 ! Sc
n induces well-

defined functors on the quotient categories:

⌅n : K1 ! Sc
n and ⌅n : K1 ! Sc

n .

Proof. Taking into account the defining identity ⌅n = "n
4 � ⌅4 (cf. Proposition

3.5.5) and Proposition 5.2.4, it su�ces to show that if two Kirby tangles K and K 0

in K1 are related by a 1/2-handle trading as in Figure 5.2.2 (a), then their images
⌅4(K) and ⌅4(K 0) in Sc

4 are related by a (T) move, while if K and K 0 are related
by blowing down/up as in Figure 5.2.2 (b), then ⌅4(K) and ⌅4(K 0) are related by
a (P) move.

In the light of the construction of the surface SK in Section 3.4, the latter fact
is essentially trivial, since the unknot with frame +1 involved in the blow down/up

(1 3)

(3 4)

(1 2)

(1 3)

(3 4)

(1 2)

(1 3)

(3 4)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 3)

(3 4)

(1 2)

(1 3)

(3 4)

(1 2)

(1 3)

(3 4)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 2)

(1 3)

(1 4)

(3 4)

(1 2)

(1 2)

(1 2)

(3 4)

(1 3)

(3 4)

(1 2)

(1 2)

(1 2)

(a) (c)

(d)

(f ) (g)

(e)

(h)

(b)

(R2)

(R2)

(R4) (R3)

(R3)

(T)

(1 4)
(2 4)

(3 4) (2 3)

Di

D′
i

δi

βs+1
Bs+1

Figure 5.3.3.
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corresponds in SK exactly to a positively half twisted closed band as the one in the
right-hand side of the move (P). The former fact is proved in Figure 5.3.3. This figure
shows the sequence of moves needed to replace the disks Di and D0

i in diagram (a),
corresponding to a canceling 1-handle of K, with the new ribbon Bs+1 in diagram
(h), corresponding to the new 2-handle of K 0 deriving from the trading. The two
bands labeled (1 2) and (3 4) in (a) are assumed to have been expanded from the
stabilization ones. The first band will give rise to the band �s+1, the second one is
only an auxiliary band, which has to be retracted back in (h). ⇤

Theorem 5.3.3. For any n � 4, the restriction functor ⇥n : Sc
n ! Kc

n (resp.
⇥n : Sc

n ! Kc
n) and the functor ⌅n : K1 ! Sc

n (resp. ⌅n : K1 ! Sc
n) are category

equivalences. Moreover, #n
1 �⇥n �⌅n (resp. #n

1 �⇥n �⌅n) is equal to idK1
(resp. idK1

),
while ⌅n � #n

1 �⇥n (resp. ⌅n � #n
1 �⇥n) is naturally equivalent to idSc

n
(resp. idSc

n
).

Proof. It follows immediately by Theorem 3.6.4 and the propositions above. ⇤

5.4. The quotient categories Hn and Hn

Analogously to what was done for the categories of Kirby and ribbon surface
tangles, we introduce the quotients of the universal groupoid ribbon Hopf algebra
Hr(G) by two additional relations. The first relation states the duality of the algebra
integral and cointegral with respect to the copairing. The second one is a kind of
normalization telling that a specific closed morphism equals the empty morphism
id1. In particular, the corresponding quotients of Hr,c

n ⇢ Hr
n will be shown to be

equivalent to Kc
n and Kc

n in the next section.

Definition 5.4.1. Given a groupoid G, a ribbon Hopf G-algebra H in a braided
monoidal category C is called self-dual if the following identity (cf. Table 5.4.1)
holds for every i 2 G:

(li ⇧ id1i) � �i,i = L1i . (d)

Moreover, a self-dual ribbon Hopf G-algebra H is called boundary if the following
normalization identity (cf. Table 5.4.2) holds for every i 2 G:

li � v1i � ⌘i = id1 . (n)

We define the universal self-dual ribbon Hopf algebra Hr(G) to be the quotient
category of Hr(G) modulo the relations (d) presented in Table 5.4.1, and the uni-
versal boundary ribbon Hopf algebra Hr(G) to be the quotient category of Hr(G)
modulo the relations (n) presented in Tables 5.4.2.

Like for the categories of tangles, the quotients Hr(G) and Hr(G) inherit from
Hr(G) a strict monoidal structure, whose product will be still denoted by ⇧ , and
we have monoidal quotient functors

Hr(G) ! Hr(G) ! Hr(G) .

It is well-known (cf. [35]) that the relation (d) in Table 5.4.1 implies the sym-
metric relation (d 0) and also the non-degeneracy of the copairing and the duality of
the multiplication and comultiplication morphisms in Hr(G). For the sake of com-
pleteness we present the result below.
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(in addition to the axioms of Hr(G))
Axiom for the universal self-dual ribbon Hopf algebra H (G)

Properties of the universal self-dual ribbon Hopf algebra H (G)

1i 1i

(d)

(d)

1i 1i

(d′)

(d2 ′)

Relation symmetric to

Definition and properties of the pairing

1i 1j 1i 1j

i,j =
(d1) (d2)

def
σ

1i 1i 1i

1i 1i 1i

1i 1i 1i 1i 1i 1i 1i 1i 1i 1i 1i 1i

(d3) (d3 ′)

r

r

Table 5.4.1.

(in addition to the axioms of r(G))H

Relation symmetric to

Axiom for the universal boundary ribbon Hopf algebra H (G)

Property of the universal boundary ribbon Hopf algebra H (G)

(n)

(n′)

r

r

−1

(n)
1 O

O

Table 5.4.2.

Proposition 5.4.2. Let G be any groupoid. Then, the following relation holds
in Hr(G) for every i 2 G (cf. Table 5.4.1):

(id1i ⇧ li) � �i,i = L1i , (d 0)

Moreover, the pairing morphisms �i,j : H1i ⇧H1j ! 1 in Hr(G) defined by

�i,j = (⇤1i ⇧ ⇤1j) � (id1i ⇧ �i,j ⇧ S�1
1j

) (d1)

for every i, j 2 G, satisfy the following identities (d2-2 0) and (d3-3 0) in Table 5.4.1.
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Proof. Relation (d 0) is equivalent to (d) modulo (i5) and (f5-11) in Tables
4.1.8 and 4.2.2. Identity (d2) is proved in Figure 5.4.3, and then (d2 0) follows by
symmetry. Finally, by using (d2-2 0), one can easily derive (d3-3 0) from (r7-7 0) in
Tables 4.2.1 and 4.2.2. ⇤

1i

1i 1i

1i

1i

1i

1i

1i

1i

1i

(d1)
(f2) (f7)

(p3) (f11 ′)
(r7)

(d)
(f1)

Figure 5.4.3. Deriving relation (d2) in Hr(G) [d/194, f/129-134, p/134, r/132]

Proposition 5.4.3. Given a groupoid G, the following relation holds in Hr
n

for every i 2 G (see Table 5.4.2):

li � v�1
1i
� ⌘i = id1. (n0)

Proof. See Figure 5.4.4. ⇤

1 −1−1
−11

1
O

(n) (a7) (p6) (a8)(d)
(r4)

Figure 5.4.4. Deriving relation (n0) inHr(G) [a/123, d/194, n/194, p/134, r/132]

Given a full inclusion of groupoids G ⇢ G0 and a spanning sequence X =
(xn, . . . , x1) for the pair (G0,G), we define the subcategories Hr

X(G) ⇢ Hr(G) and
Hr

X(G) ⇢ Hr(G) to be the images of Hr
X(G) ⇢ Hr(G) under the quotient functors.

As for Kirby tangles, we have the following commutative diagram of inclusion and
quotient functors

Hr
X(G) ! Hr

X(G) ! Hr
X(G)

\ \ \
Hr(G) ! Hr(G) ! Hr(G)

Proposition 5.4.4. For any full inclusion of groupoids G ⇢ G0 and span-
ning sequence X = (xn, . . . , x1) for the pair (G0,G), the stabilization functor
"X : Hr(G) ! Hr

X(G0) and the reduction functor #X : Hr
X(G0) ! Hr(G) induce

well-defined functors on the quotient categories

"X : Hr(G) ! Hr
X(G0) and #X : Hr

X(G0) ! Hr(G),

"X : Hr(G) ! Hr
X(G0) and #X : Hr

X(G0) ! Hr(G) .

Moreover, #X � "X = idHr(G) (resp. #X � "X = idHr(G)), while "X � #X is naturally
equivalent to idHr

X(G0) (resp. idHr
X(G0)). In particular, #X and "X are equivalences of

categories.
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Proof. The last part of the statement will follow immediately from Theorem
4.5.7, once we prove that "X and #X induce well-defined functors between the quo-
tient categories. This fact is obvious for the stabilization functor "X . Concerning
the reduction #X , we recall from Definition 4.5.5 that #X = #x1

� . . . � #xn
. Then, it

is enough to consider the case of an elementary reduction #x : Hr
x(G) ! Hr(G\i0)

for x 2 G(i0, j0). On the other hand, still referring to Definition 4.5.5, we have
#x F = ("1j0

⇧ id⇡x
1
) � F x � (⌘j0 ⇧ id⇡x

0
) for any F : Hx ⇧ H⇡0 ! Hx ⇧ H⇡1 in Hr

x(G).
Hence, we are reduced to proving that the functor x : Hr(G) ! Hr(G\i0) defined
in Proposition 4.4.11 passes to the quotient, giving well-defined functors

x : Hr(G) ! Hr(G) and x : Hr(G) ! Hr(G) .

This follows from the fact that the additional axioms (d) and (n) defining the
quotient categories Hr(G) and Hr(G) have the form F1 = F2, where all labels oc-
curring in F1 and F2 are equal to 1i for some i 2 G. Then, by Definition 4.4.9 F x

1

and F x
2 have the same graph diagrams as F1 and F2, but label 1ix instead of 1i. In

particular, F x
1 and F x

2 satisfy the same relation as F1 and F2. ⇤

5.5. Equivalences Kc
n 5 Hr,c

n and Kc
n 5 Hr,c

n

Now we want to prove that the commutative diagram in Theorem 4.7.4 induces
analogous commutative diagrams of equivalence functors between the quotient cat-
egories. This will imply the equivalence of fCob2+1 (resp. Cob2+1) and Hr = Hr

1 (resp.
Hr = Hr

1).
Analogously to what was done in Sections 4.5 and 4.7, when G = Gk, G0 = Gn and

X = ⇡n99)k = ((n, n�1), . . . , (k+1, k)) with n > k � 1, we adopt the notationHr
⇡n99)k

=
Hr

n99)k and Hr
⇡n99)k

= Hr
n99)k, and we put Hr,c

n = Hr
n99)1(Gn) and Hr,c

n = Hr
n99)1(Gn).

Proposition 5.5.1. For any n � 1, the functor �n : Hn ! Kn induces well-
defined monoidal functors on the quotient categories

�n : Hr
n ! Kn and �n : Hr

n ! Kn .

Moreover, for any n > k � 1 we have the following commutative diagrams.

Hr
n k Kn k

↓n
k ↓n

k

Hr
k

Φn

Φk

Kk

Hr
n k Kn k

↓n
k ↓n

k

Hr
k

Φn

Φk

Kk

Proof. For the first part of the statement, it su�ces to observe that, under the
functor �n : Hn ! Kn defined in Theorem 4.3.1, the relations (d) and (n) in Tables
5.4.1 and 5.4.2 translate directly in the moves (a) and (b) in Figure 5.2.2. Then,
the commutative diagrams are obtained just by quotienting the second diagram in
Proposition 4.5.8. ⇤
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Proposition 5.5.2. For any n � 4, the functor  n : Sn ! Hr
n induces well-

defined braided monoidal functors between the quotient categories:

 n : Sn ! Hr
n and  n : Sn ! Hr

n ,

 n : Sc
n ! Hr,c

n and  n : Sc
n ! Hr,c

n .

Proof. Figure 5.5.1 (resp. 5.5.2) shows that the images under  n : Sn ! Hr
n

of the two sides of the relation (T) (resp. (P)) in Figure 5.2.3 are equivalent in
Hr

n (resp. Hr
n). Therefore,  n induces well-defined functors between the quotient

categories. ⇤

−1 1

(i,j) (i,j)

1

(i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j) (i,j)

−11

(a6)
(s5) (r4)

(d) (a5)
(p6) (s3)

(f2)
(r5 ′)

Figure 5.5.1. The image of move (T) in Hr
n (i > j) [a/123, f/129, d/194, p/134,

r/132-134, s/125]

1

(i,j)(i,j)(i,j)

1

(n)
(s1 ′)
(r5 ′)

Figure 5.5.2. The image of move (P) in Hr
n (i > j) [n/194, r/134, s/123]

Theorem 5.5.3. For any n � 4, we have the following commutative diagrams
of equivalence functors:

n

nn

c
n

c
n

r,c
n

ΘS K

H
ΦΨ

n

nn

c
n

c
n

r,c
n

S K

H

Θ

ΦΨ

Proof. The existence of the functors has been already established in Propositions
5.3.1, 5.5.1 and 5.5.2. The commutativity of the diagrams follows from that of the
diagram in Theorem 4.7.4 by taking the respective quotients. According to Theorem
5.3.3, for n � 4 the functors ⇥n and ⇥n are category equivalences, which implies
that in this case  n and  n are faithful. Now, since  n is a category equivalence, it
is full and any object in Hn is isomorphic to one in its image. Then, the same holds
for its quotients  n and  n, which implies that these are category equivalences as
well, and by the commutativity of the diagram, so are �n and �n. ⇤

At this point, we are ready to give the announced algebraic description of the
category of (2-framed) 3-dimensional relative codordisms in terms of the categories
Hr = Hr

1 (in the 2-framed case) and Hr = Hr
1. The elementary morphisms and

defining axioms of such algebraic categories are listed in Tables 4.7.12 and 4.7.13

– 197 –



and Table 5.5.3. Observe that axiom (d) in the last table expresses the integral L in
terms of the cointegral � and the copairing �, and by substituting such expression
in axioms (i2-3) in 4.7.13, we can cancel both, L from the list of the elementary
diagrams in Tables 4.7.12, and (d) from the list of the axioms.

(in addition to the axioms of )Hr = Hr
1

(d) (d) (n)
1 O

Axioms for the universal andHopf algebras Hr = Hr Hr = Hr

Additional axiom for Hr = Hr
1 axioms for Hr = Hr

1Additional

11

Table 5.5.3.

Theorem 5.5.4. The functors �n : Hr,c
n ! Kc

n and �n : Hr,c
n ! Kc

n are cate-
gory equivalences for any n � 1. In particular, the universal self-dual ribbon Hopf
algebra Hr = Hr

1 is equivalent to the category of 2-framed 3-dimensional relative
cobordisms fCob2+1 = fCob2+1

1 , while universal boundary ribbon Hopf algebra Hr = Hr
1

is equivalent to the category of 3-dimensional relative cobordisms Cob2+1 = Cob2+1
1 .

Proof. According to Theorem 5.5.3, �n is a category equivalence for any n � 4.
For any 1  n  3, the commutative diagrams in Proposition 5.5.1 imply that
�n � #4

n = #4
n � �4 (resp. �n � #4

n = #4
n � �4). By Propositions 5.2.3 and 5.4.4, the

reduction functors involved in this identity are category equivalences and therefore,
�n (resp. �n) is a category equivalence as well. In particular, for n = 1 we obtain
that �1 : Hr

1 ! K1 (resp. �1 : Hr
1 ! K1) is a category equivalence. Then, the second

part of the statement follows from Proposition 5.2.2 with n = 1. ⇤
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6. Branched coverings of B4 and S3

In this chapter we apply the previous results to the covering moves problem for
branched coverings of B4 and S3.

In particular, Section 6.1 concerns the representation of 4-dimensional 2-handle-
bodies as simple coverings of B4 branched over ribbon surfaces. Here, we will derive
from the results of Chapters 2 and 3 an e↵ective way to convert any Kirby diagram
into a 3-labeled ribbon surface providing such a representation, and a 2-equivalence
criterion in terms of moves for labeled ribbon surface.

Then, in Section 6.2, by adding the further moves introduced in Section 5.2 and
restricting all the moves to the boundary, we obtain a complete solution of the Fox-
Montesinos covering moves problem for simple coverings of S3 branched over links.
Finally, we extend such result to arbitrary coverings of S3 branched over graphs.

6.1. Covers of B4 simply branched over ribbon surfaces

Recalling the definitions in Sections 2.1, we have that the 2-equivalence classes
of connected 4-dimensional 2-handlebodies bijectively correspond to the morphisms
W : M1

6O ! M1
6O in Chb3+1

1 , or equivalently, in terms of Kirby diagrams, to the
morphisms K : I6O ! I6O in K1 (cf. Proposition 2.3.1). This follows from Proposition
1.2.4, by taking into account that such a morphism W is a relative 4-dimensional
2-handlebody build on the unique 0-handle H0 = Y (M1

6O,M1
6O) 5 B4, considered up

to 2-deformations that fix H0 and do not introduce any extra 0-handle.
On the other hand, an n-fold covering of B4 simply branched over a ribbon

surface, is represented by an n-labeled ribbon surface in B4, which is nothing else
than a morphism S : J6O ! J6O in Sn. Moreover, the functor⇥n : Sn ! Kn introduced
in Section 3.3 sends S to a n-labeled Kirby diagram KS : I6O ! I6O in Kn. This in
turn represents a relative 4-dimensional 2-handlebody WS : Mn

6O ! Mn
6O build on

the n 0-handles H0
1 t . . . t H0

n = Y (Mn
6O,Mn

6O) 5 B4 t . . . t B4, considered up to
2-equivalence modulo the 0-handles.

Then, the restriction of ⇥n from n-labeled ribbon surfaces (i.e. ribbon surface
tangles with empty source and target) to n-labeled Kirby diagrams (i.e. Kirby tan-
gles with empty source and target), exactly encodes the realization of 4-dimensional
2-handlebodies up to 2-equivalence as simple branched coverings of B4 given by
Montesinos in [52]. In fact, according to the discussion at the beginning of Sec-
tion 3.3, if S ⇢ B4 is an n-labeled ribbon surface representing a simple branched
covering p : W ! B4, any adapted 1-handlebody decomposition of S induces a 2-
handlebody decomposition of W with n 0-handles, whose 1-handles (resp. 2-handles)
correspond to the 0-handles (resp. 1-handles) of S. Moreover, Lemma 3.3.1 says that
1-deformations in S induce 2-deformations in W , hence the 2-handlebody structure
of W turns out to be well-defined up to 2-equivalence by Propositions 1.3.4.

The main result of Montesinos [52] is that any connected oriented 4-dimensional
2-handlebody W has a 3-fold branched covering representation as above. Actually,
the ribbon surface S can always be made orientable (cf. Remark 1.4.4 or [42, 63]
for other constructions giving directly orientable branching surfaces). In that pa-
per the labeled ribbon surface S is obtained from a Kirby diagram of W , after it
has been suitably symmetrized with respect to a standard 3-fold simple covering
representation of the 1-handlebody W 1.
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A simpler and more e↵ective construction of a labeled ribbon surface S repre-
senting W , similar to that of labeled links given in [54] for 3-manifolds (cf. Remark
3.4.1), can be derived from Proposition 3.4.3. This is the content of Proposition 6.1.2
below.

But first we need the following definition. Let us denote by Kø
n the set of all

n-labeled Kirby diagrams K : I6O ! I6O in Kn and by Sø
n the set of all n-labeled

ribbon surfaces S : J6O ! J6O in Sn.

Definition 6.1.1. Given any Kirby tangle K : I⇡0 ! I⇡1 in Kn with ⇡0 =
((i01, j

0
1), . . . , (i

0
m0

, j0
m0

)) and ⇡1 = ((i11, j
1
1), . . . , (i

1
m1

, j1
m1

)), we define the closure of K
to be the Kirby diagram bK = ("(i11,j1

1)⇧ . . .⇧"(i1m1
,j1

m1
))�K �(L(i01,j0

1)⇧ . . .⇧L(i0m0
,j0

m0
)) in

Kø
n (see Figure 6.1.1). Similarly, given a ribbon surface tangle S : J�0 ! J�1 in Sn,

we define the closure of S to be the ribbon surface bS in Sø
n shown in Figure 6.1.2.

i01

j0
1

i02

j0
2 j0

0

i0

m

m0

i11

j1
1

i12

j1
2

j1
1m

i1m1i11 j1
1 i12 j1

2 j1
1

i1 mm1

K K

i01 j0
1 i02 j0

2 j0
0

i0 mm0

K̂ =

Figure 6.1.1. The closure bK of a Kirby tangle K in Kn

i11 j1
1)( j1

1
)i1(i12 j1

2)(

i01 j0
1)( i02 j0

2)(

mm1

j0
0
)i0( mm0

S

i11 j1
1)( j1

1
)i1(i12 j1

2)(

i01 j0
1)( i02 j0

2)(

mm1

j0
0
)i0( mm0

S Ŝ =

Figure 6.1.2. The closure bS of a ribbon surface tangle S in Sn

It is clear from the definitions (cf. Figure 3.3.17) that the functor ⇥n : Sn ! Kn

preserves closures, i.e. if ⇥n(S) = K then ⇥n(bS) = bK.
We also observe that the stabilization "n

k K of a k-labeled Kirby diagram K
is an n-labeled Kirby tangle with non-empty source and target I⇡n99)k . But the clo-
sure of "n

k K is an n-labeled Kirby diagram and the corresponding 4-dimensional
2-handlebody is 2-equivalent to the one given by K (see Figure 6.1.3 for k = n� 1).
Such 2-equivalence consists in the deletion of canceling pairs of 1/2-handles and
then 0/1-handles (in the rightmost diagram of Figure 6.1.3, the n-th 0-handle can
be canceled against the 1-handle connecting it to the (n � 1)-th 0-handle, since K
lives in the other 0-handles).

Analogously, the closure of the stabilization "n
k S of a k-labeled ribbon surface

S corresponds to an n-fold stabilization of the k-fold branched covering represented
by S, as defined in Section 1.4 (see Figure 6.1.4 for k = n� 1).
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K∈ K∈K∈ n

n−1

n n−1

n n−1

Kø
n−1 Kø

n−1Kø
n−1

n-stab.

Figure 6.1.3. n-stabilization of an (n� 1)-labeled Kirby diagram

S ∈S ∈

(n n−1)

(n n−1)

Sø
n−1Sø

n−1
n-stab.

Figure 6.1.4. n-stabilization of an (n� 1)-labeled ribbon surface

Proposition 6.1.2. Let W be a connected 4-dimensional 2-handlebody and
K be any uni-labeled Kirby diagram of it. Then, the closure bSK of the ribbon tangle
SK defined in Section 3.4 is a 3-labeled ribbon surface such that the 4-dimensional 2-
handlebody described by the 3-labeled Kirby diagram ⇥3(bSK) is 2-equivalent to W .
In other words, bSK represents W up to 2-equivalence as a 3-fold branched covering
of B4. The global structure of bSK is depicted in Figure 6.1.5 (see Section 3.4 for the
definition of TK).

TK

(3 2) (2 1)

(3 2) (2 1)

TK

(2 1)

(3 1)

Figure 6.1.5. The global structure of the ribbon surface bSK

Proof. The same argument of the proof of Proposition 3.4.3 still works here,
except for the absence of all the components relative to the ribbon surface tangles
Qm0 and Qm1 , which are empty in the present context, and for the use of handle
cancelation in place of the reduction functor #3

1 in the end. Namely, we start with
the adapted 1-handlebody decomposition of bSK having the same handles as the
one of SK in the proof of Proposition 3.4.3, apart from the fact that the collars of
the source and the target are now considered as 0-handles. Then, we consider the
corresponding 3-labeled Kirby diagram ⇥3(bSK) and perform on it the slidings and
the crossing changes described in the Figures 3.4.10, 3.4.11 and 3.4.12. After that,
we can isotope the resulting diagram to the separate union of two chains of handles
on the left, like those in the first diagram of Figure 6.1.3 for n = 3 and n = 2
respectively, and a copy of the original K labeled by 1. This is just a 3-stabilization
of K, hence it can be reduced to K by canceling all the handles carrying the labels
3 and 2 in the order as shown in Figure 6.1.3. ⇤
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Our first covering moves theorem concerns the 2-equivalence of 4-dimensional
2-handlebodies represented by labeled ribbon surfaces in B4, as described above in
terms of the ⇥n’s. Its proof will make use of the next two lemmas.

Lemma 6.1.3. For any k-reducible Kirby tangle K 2 Kn99)k, the 4-dimensional
2-handlebodies represented by the Kirby diagrams d#n

k K and bK are 2-equivalent.

Proof. The case of k = n � 1 is shown in Figure 6.1.6, while the general
case follows by induction on the di↵erence n � k. Starting from bK with K =
(id(n,n�1) ⇧ L) � (�(n,n�1) ⇧ id⇡0) 2 Kn99)k, the first step in the figure is just a 1/2-
handle cancelation, the second one is based on Lemma 2.3.6 like the first step in
Figure 2.3.18, the third one consists in a 2-handle sliding. Finally, the last diagram
is the closure of "n

n�1 #n
n�1 K, hence it can be reduced to the closure of #n

n�1 K as
said above (cf. Figure 6.1.3). ⇤

n−1n

n

−1

n

n−1

L(n,n−1)

n

n

−1

n

n−1

L(n,n−1)

L

n

n−1

L

n

n−1n

n−1

n

n−1

Figure 6.1.6. Proof of Lemma 6.1.3

Lemma 6.1.4. Up to labeled 1-isotopy, any n-labeled ribbon surface S repre-
senting a connected branched covering of B4 is the closure bR of a 1-reducible ribbon
surface tangle R = (id�n99)1⇧ T ) ���n99)1 : I�n99)1 ! I�n99)1 in Sc

n (cf. Figure 6.1.7).

TS

1σ !!✮n

1σ !!✮n

Figure 6.1.7. Connected coverings are given by 1-reducible ribbon surfaces

Proof. The connectedness of the covering implies that the transpositions which
appear as labels of S generate a transitive subgroup of the symmetric group ⌃n.
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This is trivially equivalent to say that they generate all ⌃n. Then, we can use the
labeled 1-isotopy move (S24) in Figure 1.3.13 to expand from S a tongue which, after
a suitable sequence of ribbon intersections, is labeled with any given transposition
⌧ 2 ⌃n on its tip. In particular, in this way we can expand from S the reduction
bands making it the closure of a 1-reducible n-labeled ribbon surface tangle, as in
Figure 6.1.7. ⇤

Theorem 6.1.5. Two connected simple coverings of B4 branched over ribbon
surfaces represent 2-equivalent 4-dimensional 2-handlebodies if and only if, after sta-
bilization to the same degree � 4, their labeled branching surfaces can be related by
labeled 1-isotopy, i.e. labeled 3-dimensional diagram isotopy and the labeled versions
of the 1-isotopy moves in figure Figure 1.3.13 (cf. Proposition 1.3.9), and the ribbon
moves (R1) and (R2) in Figure 1.4.5. For the reader convenience those moves are
reproduced in Figures 6.1.8 and 6.1.9 below.

Figure 6.1.8. Labeled 1-isotopy moves (with any labeling)

(R1) (R2)(i j) (i k)

(j k)

(i j) (i k)

(j k)

(i j) (i j)

(k l)

(i j) (i j)

(k l)

Figure 6.1.9. Ribbon moves (i, j, k and l all di↵erent)

Proof. Let Kc,ø
n be the set of morphisms K : I⇡n99)1 ! I⇡n99)1 in Kc

n, and Sc,ø
n be

the set of morphisms S : J�n99)1 ! J�n99)1 in Sc
n. Moreover, consider the subsetsbKc,ø

n ⇢ bKø
n and bSc,ø

n ⇢ bSø
n consisting of the closures of the morphisms in Kc,ø

n and
Sc,ø

n respectively. Then, by the above discussion of the closure and Lemma 6.1.3, we
have the following commutative diagram.

Θn

Θn

↓n
1Sc,ø

n

Ŝc,ø
n

Kc,ø
n

K̂c,ø
n

Kø
1

closure 2-equiv.closure

We observe the 1-reduction #n
1 K of a Kirby tangle K 2 Kc,ø

n is already a Kirby
diagram, hence we have d#n

1 K = #n
1 K. Then, the 2-equivalence arrow is given by

Lemma 6.1.3 and it consists in the reduction to only one 0-handle as described in
the proof of that lemma.
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By Lemma 6.1.4, any n-labeled ribbon surface that represents a connected
branched covering of B4 can be seen as a representative of an element of bSc,ø

n . Then,
according to the discussion at the beginning of the section, the branched covering
representation of 4-dimensional 2-handlebodies in the statement coincides with the
composition of ⇥n : bSc,ø

n ! bKc,ø
n and the 2-equivalence map bKc,ø

n ! Kø
1.

Now, the “if” part of the statement just says that such composition is well-
defined, which is known from Propositions 3.3.2 and 3.3.4 for any n � 2. While the
“only if” part says that it is injective for n � 4. This immediately follows from the
surjectivity of the closure map Sc,ø

n ! bSc,ø
n and the bijectivity of #n

1 �⇥n : Sc,ø
n ! Kø

1,
guaranteed by Theorem 3.6.4 for any n � 4. ⇤

Before of going on, let us make a pair of remarks on the above results about the
representation of 4-dimensional 2-handlebodies as branched coverings of B4.

Remark 6.1.6. Both Proposition 6.1.2 and Theorem 6.1.5 concern connected
handlebodies. However, their generalization to more connected components is s-
traightforward, being di↵erent components independent from each other. Of course,
to represent 4-dimensional 2-handlebodies with c connected components in general
are needed coverings of degree 3c. While coverings of degree 3c + 1 are involved
in relating two covering representations of 2-equivalent handlebodies (degree 4c is
needed if the stabilizations are required to be performed once for all at the begin-
ning). Moreover, in contrast with the connected case, also labeling conjugation has
to be allowed, in order to get the same set of labels for the sheets of the two coverings
contained in corresponding components.

Remark 6.1.7. We recall that 1-isotopy of ribbon surfaces in B4 was derived
from embedded 1-deformation of embedded 2-dimensional 1-handlebodies in B4,
by forgetting the handlebody structure. On the other hand, isotopy is related in
a similar way to a suitable notion of embedded 2-deformation. In this perspective,
isotopy di↵ers from 1-isotopy just for allowing also addition/deletion of embedded
canceling pairs of 1/2-handles and 2-handle isotopy (which may involve non-ribbon
intersections in the diagram, such as double loops and triple points).

Analogously, di↵eomorphic 4-dimensional 2-handlebodies are 3-equivalent (cf.
Section 1.2). Hence, the notion of di↵eomorphism between 4-dimensional 2-handle-
bodies di↵ers from that of 2-equivalence for allowing also addition/deletion of can-
celing pairs of 2/3-handles and 3-handle isotopy.

Now, the connection between labeled 1-isotopy of ribbon surfaces in B4 and
2-equivalence of 4-dimensional 2-handlebodies, established in the proofs of Lemma
3.3.1 and Proposition 3.3.2 (cf. also Lemma 3.5.3 for the opposite direction) through
branched coverings and covering moves, can be at least partially extended. More
precisely, attaching a labeled 2-handle to the branching surface S ⇢ B4 of a simple
branched covering p : W ! B4 corresponds to attaching a 3-handle to the covering
4-dimensional handlebody W , in such a way that a canceling pair of labeled 1/2-
handles in S corresponds to a canceling pair of 2/3-handles in W .

This suggests a possible approach towards the study of the di↵erence between
2-deformation and di↵eomorphism of 4-dimensional 2-handlebodies, by relating it to
the di↵erence between 1-isotopy and isotopy of ribbon surfaces. Good test examples
could be the Akbulut-Kirby 4-balls �n (see figure 6.1.10 for the case of n = 3),
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which were proved to be di↵eomorphic to B4 in [21], but are not known to be 2-
equivalent to B4. In fact, the proof of the di↵eomorphism �n 5 B4 is based on
the cleaver addition of a canceling pair of 2/3-handles, followed by an isotopy of
the attaching map of the 3-handle and eventually by the cancelation of it against
another 2-handle. It would be interesting to see whether this process corresponds to
changing the branching ribbon surface by labeled isotopy.

(1 2)
(1 2)

(1 2)

(1 2)

(1 3)

(1 3)

(1 2)

(1 2)(1 2)−1

0

Figure 6.1.10. The Akbulut-Kirby 4-ball �3

We conclude the section with the following theorem concerning 4-dimensional
2-handlebodies having di↵eomorphic boundaries. This will be applied in the next
section to obtain covering moves theorems for 3-manifolds.

Theorem 6.1.8. Two connected simple coverings of B4 branched over ribbon
surfaces represent 4-dimensional 2-handlebodies with di↵eomorphic oriented bound-
aries if and only if, after stabilization to the same degree � 4, their labeled branching
surfaces can be related by labeled 1-isotopy, the ribbon moves (R1) and (R2), and
the moves (P) and (T) in Figure 6.1.11 (cf. Figure 5.2.3).

(T) (P)

(i j) (i j)(i j)

(i j)

(i j)

(i j)

Figure 6.1.11. Ribbon moves (i, j, k and l all di↵erent)

Proof. In the light of Propositions 5.2.3 and 5.3.1, the commutative diagram in
the proof of Theorem 6.1.5 induces the following one under the quotient functors
Sn ! Sn and Kn ! Kn. Here, the double bar denotes the image in the quotient of
the corresponding set in the original diagram.

↓n
1c,ø

n

Ŝc,ø
n

c,ø
n

Kc,ø
n

ø
1

closure closure

nΘ

nΘ

K KS

̂
2-equiv.

Up to planar isotopy the moves (T) and (P) in Figure 6.1.11 are the same
as the homonymous additional relations defining the quotient category Sn. On the
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other hand, we know that two uni-labeled Kirby diagrams represent 4-dimensional
2-handlebodies with di↵eomorphic boundaries if and only if they are equivalent in
Kø

1 (this is just the classical Kirby’s theorem).
Then, the theorem can be rephrased by saying that the composition of ⇥n :bSc,ø

n ! bKc,ø
n with the 2-equivalence arrow is a well-defined injective map. This can

be proved by arguing on the commutative diagram as in the proof of Theorem 6.1.5,
thanks to Proposition 5.3.1 and Theorem 5.3.3. ⇤

6.2. Equivalence of branched covers of S3

Our last goal is to derive from Theorem 6.1.8 the announced general solution of
the covering moves problem for branched coverings of S3.

As a preliminary step, we show that any simply labeled link in S3 can be trans-
formed through the Montesinos moves in Figure 1.4.4 into the boundary of a labeled
ribbon surface in B4 (see Proposition 6.2.2). This follows quite directly from Theo-
rem B of [58] about liftable braids, which we state here as Lemma 6.2.1 after having
recalled a couple of definitions.

A simply labeled braid is called a liftable braid when the two labelings at its
ends coincide. By an interval we mean any braid that is conjugate to a standard
generator in the braid group. Actually, to make both the terms “liftable” and “in-
terval” meaningful, one should think of braids as self-homeomorphisms of the disk
in the usual way (see [9] or [58]), but this is not relevant in the present context.

Of course, a labeled interval, as well as a standard generator, may or may not
be liftable depending on the labeling. We say that a labeled interval x is of type i if
xi is the first positive power of x which is liftable. It is not di�cult to realize that
conjugation preserves interval types and that each interval is of type 1, 2 or 3 (cf.
Lemma 2.4 of [9] or Lemma 2.3 of [58]).

The labeled intervals x, y and z, whose first liftable positive powers are depicted
in Figure 6.2.1, are the standard models for the three types above. Namely, any
labeled interval of type 1, 2 or 3 is respectively a conjugate of x±1, y±1 or z±1.
Evidently, in the figure only the two non-trivial strings of each labeled braid are
drawn, the other ones being just horizontal arcs with arbitrary labels. Moreover, in
the labeling of each single braid, we assume that i, j, k and l are all di↵erent.

(i j)

(j k) (j k)(k l) (k l)(i j)

(i j)(i j)

(i j)

(i j) (i j) (i j)

x y2 z3

Figure 6.2.1.

The main result of [58] is the following.

Lemma 6.2.1. Any liftable braid is a product liftable powers of intervals.

We emphasize that the lemma holds without restrictions on the degree n of the
labeling. However, it is worth observing that the case of n = 2 is trivial (every braid
is liftable in this case), while the case of n = 3 di↵ers from the general one for the
absence of intervals of type 2. This special case was previously proved in [9] (cf. also
[10]), but the proof of Lemma 6.2.1 given in [58] does not depend on [9].
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The relevant consequence of Lemma 6.2.1 in the present context is the following
branched covering counterpart of the vanishing of the oriented cobordism group ⌦3.

Proposition 6.2.2. Any labeled link L ⇢ S3 representing a (possibly discon-
nected) n-fold simple branched covering of S3 is equivalent, up to labeled isotopy
and moves (M1) and (M2) in Figure 1.4.4, to the boundary of labeled ribbon surface
S ⇢ B4 representing an n-fold simple branched covering of B4.

Proof. Up to labeled isotopy, we can assume that the link L is the closurebB of simply labeled braid B (for example, we can use the labeled version of the
well-known Alexander’s braiding procedure). Of course B is a liftable braid. Then,
Lemma 6.2.1 tells us that, up to labeled isotopy, we can think of B a product of
conjugates of braids like x±1, y±2 or z±3 (see Figure 6.2.1). Since braids y±2 and z±3

can be obviously trivialized respectively by moves (M2) and (M1), we can reduce
ourselves to the case when B is a product of liftable intervals.

In this case, a simply labeled ribbon surface S ⇢ B4 bounded by L can be
easily constructed from the band presentation of B (see [67, 68]) determined by
its factorization into liftable intervals. Namely, we start with a disjoint union of
labeled trivial disks in B4, spanned by the labeled trivial braid obtained from B by
trivializing all the terms x±1 appearing in the factorization. Then, we attach to these
disks a labeled half-twisted band for each such term. The 3-dimensional diagram of
S may or may not form ribbon intersection, depending on the conjugating braids of
the liftable intervals in the factorization of B (cf. [67, 68]). The labeling consistency
when attaching the bands is always ensured by the liftability of the intervals. ⇤

Now we can prove our equivalence theorem for simply labeled links in S3.

Theorem 6.2.3. Two connected simple coverings of S3 branched over links
represent di↵eomorphic oriented 3-manifolds if and only if, after stabilization to the
same degree � 4, their labeled branching links can be related by labeled isotopy and
the Montesinos moves (M1) and (M2) in Figure 6.2.2 (cf. Figure 1.4.4).

(i j)

(i k)(j k)

(j k) (i j)

(i k)(j k)

(j k) (i j)

(i j)(k l)

(k l) (i j)

(i j)(k l)

(k l)

(M1) (M2)

Figure 6.2.2. Montesinos moves (i, j, k and l all di↵erent)

Proof. As mentioned in Section 1.4, it has been known for a long time, since
the early work of Montesinos, that moves (M1) and (M2) are covering moves. That
is they, as well as labeled isotopy and stabilization, do not change the covering
manifold up to di↵eomorphism (see Figure 1.4.6 for a proof of this fact). Therefore,
nothing more has to be added about the “if” part of the theorem.

The “only if” part follows from Proposition 6.2.2 and Theorem 6.1.8, taking into
account that moves (T) and (P) preserve the boundary up to labeled isotopy, while
the restriction of moves (R1) and (R2) to the boundary can be realized by moves
(M1) and (M2) respectively. The last fact is trivial for move (R2) and it is shown
in Figure 6.2.3 for move (R1). ⇤
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(i j) (i k)

(j k)

(i j) (i k)

(j k)

(i j) (i k)

(j k)

(M1) (M1)

Figure 6.2.3.

Finally, we want to extend Theorem 6.2.3 to arbitrary connected branched cov-
erings of S3, by adding the extra moves (G1) and (G2) in Figure 6.2.4 (cf. Figure
1.4.3), where the local orientations of the branching set is only needed to specify the
monodromy. The further extension to disconnected branched coverings is left to the
reader (cf. Remark 6.1.6).

Theorem 6.2.4. Two connected coverings of S3 branched over a graph repre-
sent di↵eomorphic oriented 3-manifolds if and only if, after stabilization to the same
degree � 4, their branching graphs can be related by labeled isotopy and the moves
(M1), (M2), (G1) and (G2) in Figures 6.2.2 and 6.2.4.

)(G1
σσ 1

σ1

σ1

σ2

σ2

σ2

σ1

σ1

σ2

σ2

)(G2

Figure 6.2.4. Covering moves for labeled graphs (� = �1 · �2)

Proof. We have already observed in Section 1.4 that moves (G1) and (G2)
are covering moves, as they are applications of the coherent monodromies merging
principle. In the light of Theorem 6.2.3, we have only to show that they allow us
to transform any labeled graph into a simply labeled link. We proceed in two steps:
first we make the labeling simple, by performing moves (G1) on the edges; then we
make the graph into a link, by performing moves (G2) on the vertices.

Let G ⇢ R3 be a labeled embedded graph, endowed with a given graph structure
without loops (that is every edge has distinct endpoints). We make the labeling
simple, by operating on the edges of G one by one. Each time, we assume, up to
labeled isotopy, that the edge e under consideration is not involved in any crossing.
Denoting by � 2 ⌃n the label of e, we consider a coherent factorizations � = ⌧1 . . . ⌧k

into transpositions (any minimal factorization of � is coherent). Then, we split e into
k edges e1, . . . , ek with the same endpoints, such that ei is labeled by ⌧i, for each
i = 1, . . . , k. To do that, we perform k � 1 moves (G1), which progressively isolate
the transpositions ⌧i as labels of new edges. Once all edges of G have been managed
in this way, we are left with a simply labeled graph that we still denote by G.

Now, we operate on the vertices of G one by one, in order to make G into a link.
Let v be a vertex of G and e1, . . . , eh be the edges of G having v as an endpoint, num-
bered according to the counterclockwise order in which they appear around v in the
planar diagram of G. Since the total monodromy ⌧1 . . . ⌧h around v must be trivial,
h must be even and the edges around v, can be reordered, up to labeled isotopy, in
such a way that ⌧i = ⌧h�i+1, for every i = 1, . . . , h/2. This immediately follows from
the well-known classification of the branched coverings of S2, if one looks at a small
2-sphere around v transversal to G (cf. [8] or [58]). Then, by h/2 � 1 applications
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of move (G2), we replace the vertex v by h/2 non-singular vertices v1, . . . , vh/2,
such that vi is a common endpoint of ei and eh�i+1, for each i = 1, . . . , h/2.
We leave to the reader to verify that the sequence ⌧1, . . . , ⌧h/2 is coherent and that
this su�ces for the needed moves (G2) to be performable. Obviously, after all the
singular vertices of G have been replaced by non-singular ones, we are done. ⇤
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