
UNIVERSITÀ DEGLI STUDI DI CAMERINO

SCUOLA DI SCIENZE E TECNOLOGIE

Corso di Laurea in Matematica e applicazioni
(classe LM-40)

QUANTUM COMPUTATION
OF THE JONES POLYNOMIAL

Tesi di Laurea in Topologia

Relatore: Laureanda:
Prof. Riccardo Piergallini Alessandra Renieri

ANNO ACCADEMICO 2010-2011

Abstract

Knot invariants are algebraic objects associated to knots, which do not
change under isotopies. Such invariants are important tools for the clas-
sification of knots, since they allow to distinguish knots that are not isotopic.

The Jones polynomial is one of the most important knot invariants. The
definition of it, given by Vaughan Jones in 1984, is based on the realization of
knots as closed braids and on algebraic notions inspired to Quantum Physics,
such as Heck algebras and the Yang-Baxter equation. Some years later, Louis
Kauffman provided a different and simpler approach to the Jones polynomial,
based on a recursive scheme on the number of crossings of a diagram of the
knot.

Both these approaches lead to classical algorithms for the computation of
the Jones polynomial, which are not efficient, that is their complexity grows
exponentially with the number of the crossings of the braid or diagram.

On the contrary, in the context of Quantum Computation the problem
admits a solution having polynomial complexity.

The aim of this work is to illustrate an explicit quantum algorithm for
approximating the value VK(e2πi/k) of the Jones polynomial at any root of

unity t = e
2πi
k . More precisely, the algorithm takes as the input a knot K

represented by a closed braid with n strands and m crossing, and produces as
the output an ε-approximation of the value VK(e2πi/k) in a polynomial time
with respect to m, n, k and 1

ε
, with all but exponentially small probability.

Contents

1 Knots 7
1.1 Knots and diagrams . 7
1.2 Some numerical invariants . 11
1.3 The Kauffman-Jones polynomial 14

2 Braids 23
2.1 Braids . 23
2.2 The Braid group, Bn . 25
2.3 Closed braid . 27
2.4 Hecke Algebra . 29
2.5 Jones polynomial. 33

3 Temperley Lieb Algebras 37
3.1 The TLn Algebra . 37
3.2 Representing Bn into TLn . 40
3.3 Markov trace . 41
3.4 Path model representation . 42
3.5 The Jones Polynomial . 45

4 Quantum computation 46
4.1 Algebra background . 46
4.2 Postulates of the Quantum Mechanics 48
4.3 The quantum computer . 51
4.4 Classes of computational complexity. 53

5 The algorithm 55
5.1 Classical algorithms . 55
5.2 Implementing the path model representation 59

1

5.3 The Algorithm Approximate-Jones-Trace-Closure 61
5.4 The Algorithm Approximate-Jones-Plat-Closure 63
5.5 Conclusion e further direction 67

2

List of Figures

1.1 The unknot, the right handed trefoil knot and the left handed
trefoil knot and the figure eight knot. 8

1.2 Examples of links. 8
1.3 The two possible orientations of the left-handed trefoil knot. . 9
1.4 Projection of a knot. 10
1.5 Detail: a double point in a projection. 10
1.6 Detail: a double point in a diagram. 10
1.7 The three Reidemeister moves. 11
1.8 The knot K with c(K) ≤ 8 up to isotopy and symmetry. . . . 12
1.9 The standard sign convection. 13
1.10 The two possible resolutions of a crossing. 15

2.1 An n-braid diagram. 25
2.2 The composition of b and b′. 25
2.3 An example of the trace closure of a 4-strand braid. 27
2.4 An example of the plat closure of a 4-strand braid. 27
2.5 ρ(b+) = ρ(b1)tiρ(b2) ρ(b−) = ρ(b1)t−1

i ρ(b2). 35

3.1 Examples of Kauffman n-diagrams. 38
3.2 An example of the multiplication rule. 39
3.3 An example of Markov trace on a Kauffman diagram. 42
3.4 An example of labelled Kauffman diagram. 43

5.1 c = b · n
2

capcups. 65
5.2 n = 2, d = 1, h = 2 . 69
5.3 n = 3, d = 1, h = 2 . 69
5.4 n = 4, d = 1, h = 3 . 70
5.5 n = 6, d = 5, h = 2 . 70
5.6 n = 5, d = 3, h = 2 . 71

3

5.7 n = 7, d = 1, h = 5 . 71
5.8 n = 8, d = 2, h = 5 . 72

4

Introduction

Knot invariants are algebraic objects associated to knots, which do not
change under isotopes. Such invariants are important tools for the classi-
fication of knots, since they allow to distinguish knots that are not isotopic.

The Jones polynomial is one of the most important knot invariants. The
definition of it, given by Vaughan Jones in 1984, is based on the realization of
knots as closed braids and on algebraic notions inspired to Quantum Physics,
such as Heck algebras and the Yang-Baxter equation. Some years later, Louis
Kauffman provided a different and simpler approach to the Jones polynomial,
based on a recursive scheme on the number of crossings of a diagram of the
knot.

Both these approaches lead to classical algorithms for the computation of
the Jones polynomial, which are not efficient, that is their complexity grows
exponentially with the number of the crossings of the braid or diagram.

On the contrary, in the context of Quantum Computation the problem
admits a solution having polynomial complexity.

The aim of this work is to illustrate an explicit quantum algorithm for
approximating the value VK(e2πi/k) of the Jones polynomial at any root of

unity t = e
2πi
k . More precisely, the algorithm takes as the input a knot K

represented by a closed braid with n strands and m crossing, and produces as
the output an ε-approximation of the value VK(e2πi/k) in a polynomial time
with respect to m, n, k and 1

ε
, with all but exponentially small probability.

The thesis is divided in five chapters.
In Chapter 1 we introduce the basic notion of Knot theory (see [1],[2],[3]).

This theory studies the topology of closed curves in the space, up to isotopy.
We also give the definitions of some of the most important knot invariants,
such as the Kauffman and the Jones polynomial.

In Chapter 2 we treat the notion of braid (see [5],[9]). Starting from the
geometric braids, we have defined the braid group Bn. In order to establish

5

the connecting between braids and knots ([11]), we define two different clo-
sures of a braid (trace and plat closure). According to the Alexander theorem
we know that for every knot K there exist some braid b in Bn such that the
closure of b is K. Then, we give an algebraic description the Kauffman and
Jones polynomials based on the notion of Heck algebra and the definition of
the function Trn, which lead Jones himself to the definition of his polynomial.

In Chapter 3 we define the Temperley Lieb algebra TLn(d) and, through
the construction of a function ρd, we represent the group Bn inside TLn(d).
Since the algorithm that we are going to describe is quantistic, the represen-
tation that we have is required to be unitary, so that a quantum computer
can executes it. Indeed a unitary interpretation of the above representation
is given in terms of the so called path model. Then we review the Kauffman
and the Jones polynomial in this context.

The Chapter 4 is a compendium of the most important notion of the
Quantum Computation ([6]), as the four principles of the Quantum Mechan-
ics, the quantum Turing machine, some of the quantum classes of computa-
tional complexity and some of the quantum logic gates (as, for example the
Hadamard gate).

Chapter 5 is the core of our thesis. Here we describe the approximation
algorithm presented in ([8]) and try to compare this quantum algorithm with
the classical algorithms for the computation of the exact Jones polynomial.

6

Chapter 1

Knots

This first chapter is a presentation of the most basic and important objects
of the theory of knots. Precisely, we define the notion of knot (and link),
the equivalence between two knots, the way a knot can be drawn in a plane,
the Reidemeister moves for such planar representations, and some of the
invariants that can be associated to a knot. In particular, we describe the
Kauffman and the Jones polynomials.

1.1 Knots and diagrams

The mathematical notion of knot arises as an abstract model of the physical
object consisting of a loop of rope arbitrarily entangled in the space. This
can be continuously deformed, with the obvious physical constraint that it
cannot cross itself, but it cannot be cut. Hence, it is natural to expect that
the mathematical concept of knot is a topological one.

Definition 1.1.1. A knot is a closed and simple curve K ⊂ R3 such that
K ∼= S1 (K is topologically equivalent to the circumference). Furthermore,
we assume that K is smooth, i.e. the curve can be approximated by its tangent
line at any point.

7

Figure 1.1: The unknot, the right handed trefoil knot and the left handed
trefoil knot and the figure eight knot.

The topological union of n knots is said to be a n-link L, i.e.

L = K1 t · · · tKn ⊂ R3 ,

where K1, . . . , Kn ⊂ R3 are called the components of L.

Figure 1.2: Examples of links.

According to the definition a knot K is a special case of a link L with
only one component. Henceforth, we will use K to denote both a link or a
knot, and we will specify the number of the components only when we will
need it.

Sometimes it is convenient to fix an orientation on a knot, meaning one
of the two possible ways of running along it. Similarly, one can orient an
n-link, by fixing an orientation on each component of it. Of course, this can
be done in 2n ways.

Definition 1.1.2. An oriented knot is a knot with a specified orientation
Similarly, we define an oriented link as a link with a specified orientation

on each component.

8

Figure 1.3: The two possible orientations of the left-handed trefoil knot.

Definition 1.1.3. We define a symmetric knot as a knot equivalent to its
mirror image.

The mathematical formalization of the intuitive idea of deformation is
provided by the notion of isotopy introduced in the next definition. For
technical reasons, this involves all the space and not only the knot, as one
could expect.

Definition 1.1.4. We define an isotopy of the space R3 as a continuous
application H : R × [0, 1] → R, such that the map ht : R → R given by
x 7→ ht(x) = H(x, t) is a homomorphism for every t ∈ [0, 1] and moreover
h0 is the identity of R3

Then, the concept of isotopy, allows us to define the equivalence between
two knots (or links), as follows.

Definition 1.1.5. Two links K0, K1 ⊂ R3 are said to be equivalent (or
isotopic) if there exists an isotopy of R3 that transforms K0 in K1, i.e.
∃ht : R3 → R3 with t ∈ [0, 1] : h0 =identity and h1(K0) = K1.

We observe that the intuitive idea of deformation corresponds to following
the knot during the isotopy, that is to considering the continuous family of
knots Kt = ht(K0). In fact, in Definition 1.1.1 we assumed that knots are
smooth and any continuous smooth family of smooth knots extend to an
isotopy of the ambient space R3.

Moreover, it is easy to verify that the equivalence of knots is a genuine
relation of equivalence.

In order to draw a knot (or a link) in a plane, so that the picture gives a
full representation of it up to isotopy, we can proceed as described below.

9

Figure 1.4: Projection of a knot.

We first isotope the original knot (or link) to a suitable one, whose or-
thogonal projection in R2 satisfy the following properties:

1. the projection is a regular map, i.e there is not vertical tangency;

2. no more than two distinct points are projected in the same point;

3. the set of the crossing points, that is the double points projection, is
finite and the projection of the corresponding tangents are distinct.

Figure 1.5: Detail: a double point in a projection.

Definition 1.1.6. A diagram D ⊂ R2 of a link L is a projection with speci-
fication of what path passes over and which under at each crossing point.

Figure 1.6: Detail: a double point in a diagram.

The representation of link K by a diagram D ∈ R2 determines univocally
the link K, up to vertical isotopies. We can ask when two diagrams represent
equivalent knots.

10

The answer to this question, was given by Reidemeister [3], in terms of
plane isotopy, preserving the structure of the diagram, included the informa-
tion relative to the crossings, and the following three moves, which change
the topological structure of the diagram.

Figure 1.7: The three Reidemeister moves.

Theorem 1.1.7. Two diagrams D0 and D1 represent isotopic links K0, K1

if and only if they can be obtained one from the other by a finite sequence of
planar isotopies and Reidemeister moves.

(For the proof see the first Chapter of [4])
This means that the Reidemeister moves reduce the three-dimensional

(and abstract problem) of knot equivalence to another problem that is two-
dimensional (and more concrete).

1.2 Some numerical invariants

In order to classify links we assign to them invariants. These are algebraic
objects (polynomials or simply numbers) that do not change under topolog-
ical deformation, that is they only depend on the isotopy class of the link.
All the invariants we will consider are defined starting from a diagram of the
link. Hence, we have to check that they are invariant under the Reidemeister
moves, that is do not depend on the specific diagram of the link.

The crossing number c(K) of a link K is the minimum number of crossings
of any diagram D, considered up to isotopy. Being the minimum among all

11

the diagrams of the link K, it does not depend on a specific diagram. Thus
no check of invariance with respect to the Reidemeister moves is needed.

For example, using symmetric knots, we know that the unknot has cross-
ing number 0, while the trefoil knots and the figure-eight knot have crossing
number respectively 3 and 4. There are no other knots with a crossing num-
ber less than 5, and just two knots have crossing number 5. The number
of knots with a particular crossing number rapidly increases as the crossing
number increases: as it can be seen in the figure below we have three knots
with crossing number 6, six knots with crossing number 7, and twenty-one
knots with crossing number 8.

Figure 1.8: The knot K with c(K) ≤ 8 up to isotopy and symmetry.

12

The linking number lk(K) of a 2-component link K is the number of
times that each curve winds around the other. It can be positive or negative
depending on the orientation of the two curves. In fact, every crossing in a
diagram of an oriented link has a sign. The crossing can be positive (+1) if
the oriented arc passing over has to be rotated through +90 degrees in order
to fit with that passing under and is negative (−1) if the arc that moves over
have to rotate through −90 degrees in order to fit the arc that moves under,
as the standard convention proves:

Figure 1.9: The standard sign convection.

Definition 1.2.1. Let K = K1tK2 be an oriented link and let D = D1tD2

the diagram of it. Then, we have that lk(K1, K2)D is the number of the
crossings at which D1 passes over (or under) D2, considered with the sign
given by the convection above. Equivalently the linking number lk(K1, K2)D
is half the sum of the signs of the crossings at which one strand is from K1

and the other is from K2.

We can see that this number is invariant for Reidemeister moves:

1. the first move involves only one component, thus it does not change
the linking number;

2. in the second move, if both the crossings belongs to K1 or K2 the
linking number does not change as in previous case, otherwise

the two crossings have opposite signs; thus, also in that case the linking
number does not change;

13

3. this move does not affect the crossing points but only their position in
the diagram.

Proposition 1.2.2. 1. lk(K1, K2) = lk(K2, K1);

2. lk(K1,−K2) = −lk(K1, K2) = lk(−K1, K2).

Proof. 1. The linking number is symmetric. While lk(K1, K2) computes
the crossings where K1 passes over K2, lk(K2, K1) computes the cross-
ings where K2 passes over K1.

We take the knotK = K1tK2. Then, rotating the knot, the component
K1 passes under K2 and thus lk(K1, K2) = lk(K2, K1) as it is shown
in the figure:

2. lk(−K1, K2) = −lk(K1, K2). Inverting the orientation of a component,
all the crossings with the other component change their sign.

1.3 The Kauffman-Jones polynomial

This invariant is not a genuine polynomial, is instead a Laurent polynomial,
i.e. a linear combination of positive and negative powers of the variable with
coefficients in K field. These Laurent polynomials in x form a ring denoted
with K[x, x−1].

In order to define this invariant we need the concept of state of a diagram.

14

A state S of a diagram D is a set of plane curves, obtained from the
diagram D by replacing each crossing by two segments that do not cross in
one of the two ways shown in the following figure:

Figure 1.10: The two possible resolutions of a crossing.

For every state we consider:

σ(S) =
∑n

i=1 σi(S) with σi(S) = ±1 resolution index of each crossing;

γ(S) = number of components of the state.

Definition 1.3.1. The Kauffman brackets of D is the Laurent polynomial in
Z[x, x−1] given by the sum over all the 2n possible state :

〈D〉 =
∑
S

xσ(S)(−x2 − x−2)γ(S)−1 .

Property 1.3.2. The Kauffman brackets are characterized by the following
properties:

1. 〈©〉 = 1;

2. 〈D̂〉 = (−x2 − x−2)〈D〉 with D̂ = D t©;

3. 〈D〉 = x〈D0〉 + x−1〈D∞〉 where D0 and D∞ are the two possible dia-
grams that we obtain after the elimination of the same crossing of D
in the two possible ways:

15

Proof. 1. Trivial proof.

2. D̂ has the same number of crossing of D. For any state S of D we add
©, then the corresponding state Ŝ of D̂ is St© and γ(Ŝ) = γ(S)+1 .
Thus,

〈D̂〉 =
∑
Ŝ

xσ(Ŝ)(−x2 − x−2)γ(Ŝ)−1 =

=
∑
S

xσ(S)(−x2 − x−2)γ(S)−1(−x2 − x−2) = (−x2 − x−2)〈D〉 .

3. We observe that the set of the states S of D are the disjoint union of
the set of the states of D0, that we called S0, and the set of the states
of D∞, that we called S∞.

Since σ(S) = σ(S0) + 1 = σ(S∞)− 1 and γ(S) = γ(S0) = γ(S∞) ,

〈D〉 =
∑
S0

xσ(S0)+1(−x2−x−2)γ(S0)−1+
∑
S∞

xσ(S∞)−1(−x2−x−2)γ(S∞)−1 =

= x〈D0〉+ x−1〈D∞〉

16

Property 1.3.3. The Kauffman brackets are invariant with respect to the II
and the III Reidemeister moves.

Proof. Second move:

since

D00 ' D∞∞ ,

D∞0 = D∞∞ t© = D00 t© = D̂00 ,

D0∞ = D′,

then

〈D〉 = x〈D0〉+x−1〈D∞〉 = x(x〈D00〉+x−1〈D0∞〉)+x−1(x〈D∞0〉+x−1〈D∞∞〉) =

= x2〈D00〉+〈D′〉+〈D̂00〉+x−2〈D00〉 = x2〈D00〉+x−2〈D00〉+〈D′〉+(−x2−x−2)〈D00〉 =

= (−x2 − x−2)〈D00〉+ (x2 + x−2)〈D00〉+ 〈D′〉 = 〈D′〉

17

Third move:

since D0 ' D′0 and D∞ = D′∞ for the second Reidemeister move, then

〈D〉 = x〈D0〉+ x−1〈D∞〉 = x〈D′0〉+ x−1〈D′∞〉 = 〈D′〉

Proposition 1.3.4. On the contrary, for the first Reidemeister moves we do
not have the invariance

Proof.
〈D〉 = x〈D0〉+ x−1〈D∞〉 = x〈D′〉+ x−1〈D̂0〉 =

x〈D′〉+ x−1〈D̂′〉 = x〈D′〉+ x−1(−x2 − x−2)〈D′〉 =

18

= (x− x− x−3)〈D′〉 = −x−3〈D′〉

In order to gain the invariance of the first Reidemeister move, we need a
correction factor, which can be given in terms of the writhe number.

The writhe number w(D) of a diagram D of an oriented link is the sum
of the signs of the crossings of D, where each crossings has sign +1 or −1 as
defined by convention in Figure 1.9.

We note that w(D) does not change if D changes under the second and
the third Reidemeister moves, while it does change by ±1 if D is changed by
the first Reidemeister move, as it is shown in the figure below.

Now, we can define the Kauffman polynomial:

Definition 1.3.5. Let D be a diagram of an oriented link L. Then the
Kauffman polynomial is the invariant of the oriented link L

PD(x) = (−x)−3w(D)〈|D|〉

where |D| is the diagram D without the orientation.

Proposition 1.3.6. The Kauffman polynomial is invariant under the Rei-
demeister moves

Proof. We do not need to control the invariance under the second and third
Reidemeister moves, because the Kauffman polynomial is composed by fac-
tors that are already invariant under such moves.

We only have to check the invariance of PD(x) under the first move, that
is:

PD′(x) = ((−x))−3wr(D′)〈|D′|〉 =

((−x))−3(wr(D)+1) 〈|D|〉
−x−3

= ((−x))−3wr(D)〈|D|〉 = PD(x)

19

Proposition 1.3.7. The Kauffman polynomial does not depend on the dia-
gram of the link L.

Definition 1.3.8. According to the proposition above, the Kauffman polyno-
mial of a link L is equal to the Kauffman polynomial of any possible diagram
D of L. Thus, PD(x) = PL(x).

We define the Jones polynomial:

Definition 1.3.9.

VL(t) = PL(x−
1
4) ∈ Z[t−

1
2 , t

1
2] .

Proposition 1.3.10. The Jones polynomial is a function

V : {Oriented links in S3} → Z[t−
1
2 , t

1
2]

uniquely determined by the following conditions:

(i) V©(t) = 1;

(ii) whenever three oriented links L+, L− and L0 are the same, except in the
neighborhood of a crossing where they are as shown below

then
tVL+(t)− t−1VL−(t) = (t−

1
2 − t

1
2)VL0(t) . (1.1)

Proof. Remembering the resolutions in figure (1.10), we have:

〈D+〉 = x〈D0〉+ x−1〈D∞〉 ,

〈D−〉 = x−1〈D0〉+ x〈D∞〉 .

We multiply the first equation by x and the second by x−1 and then we
consider the difference

x〈D+〉 − x−1〈D−〉 = (x2 − x−2)〈D0〉 .

20

Thus, using the fact that in these diagrams

w(D+)− 1 = w(D0) = w(D−) + 1 ,

it follows that:

−x4PL+(x) + x−4PL−(x) = (x2 − x−2)PL0(x) .

The substitution that we mentioned before (x−
1
4 = t) guarantees that (1.1)

holds.
The uniqueness follows by induction on the number of crossing and on

the number of crossing that we need in order to get the unknot.

Base case V©(t) = 1 ;

V©t···t©(t) = (t−
1
2 − t 12)n−1 with n = number of t. In that case, use

the second property of 1.3.2.

Inductive step From the skein relation

tVL+(t)− t−1VL−(t) = (t−1/2 − t1/2)VL0(t) .

We assume that both VL− and VL0 are univocally determined by the
two conditions mentioned above. Then also the VL+ is univocally de-
termined by construction.

Property 1.3.11. We observe that VL(t) has only even powers of t variable.
More precisely if the number of the components of L is odd then all the
exponents of t are ≡4 0, otherwise they are ≡4 2.

Proof. The proof follows from the skein relation

t4VL+(t)− t−4VL−(t) = (t−2 − t2)VL0(t)

and from the normalization V©(t) = 1.
We observe that the number of the components is:

nc(L0) ± 1 = nc(L+) = nc(L−) . (1.2)

We assume that for VL− and for VL0 the property holds, i.e. the exponents
of x are ≡4 0 or ≡4 2.

We want to prove that the property holds also for VL+ :

VL+(t) = t−4(t−4VL−(t) + (t−2 − t2)VL0(t)) .

21

If nc(L0) is odd the exponent of the t will be, by hypothesis, ≡4 0, while,
using (1.2), nc(L−) is even and the exponent of the t will be ≡4 2.

Then, after the product with the coefficients associated to both VL0

and VL− we can say that also the exponent of t is ≡4 2. Thus also the
exponent associated to VL+ will be ≡4 2.

If nc(L0) is even the exponent of the t will be, by hypothesis, ≡4 2, while,
using (1.2), nc(L−) is odd and the exponent of the t will be ≡4 0.

Then, after the product with the coefficients associated to both VL0

and VL− we can say that also the exponent of t is ≡4 0. Thus also the
exponent associated to VL+ will be ≡4 0.

In the rest of the thesis we will denote the Jones polynomial in the x
variable, VL(x) ∈ Z[x

1
2 , x−

1
2], taking into account the substitution mentioned

before.

22

Chapter 2

Braids

In this second chapter we focus on braids. After having given the basic
definitions, we introduce the braid groups Bn, that will play a crucial role in
the third chapter. To establish the connection between braids and knots, we
define two different closures of a braid: the trace closure and the plat closure.
Then, we give a different definition of the Jones Polynomial in terms of braids.

2.1 Braids

In this section we give the geometrical definition of braids. From now, we
consider the Euclidean 3-space R3 and the portion of it between the two
parallel planes with z-coordinates 0 and 1.

Definition 2.1.1. A geometric braid b is the disjoint union of ai, b = tni=1ai,
with ai smooth topological arcs, called strands, such that:

1. ai goes from (i, 0, 0) to (δ(b)(i), 0, 1) in R2 × [0, 1], where δ(b) ∈ Σn,
it goes from {1, 2, . . . , n} to {1, 2, . . . , n} and we call it permutation
associated with the braid b ;

2. ai1 ∩ ai2 = ∅ ∀i1 6= i2;

3. the arcs are monotonic with respect to the z-coordinate, i.e. the pro-
jection: πi : ai → z-axis is differential and regular (it is bijective in
[0, 1]).

23

For each i = 1, . . . , n, the arc ai admits a unique smooth parametrization
αi : [0, 1]→ R2 × [0, 1] such that αi(t) = (xi(t), yi(t), t), αi(0) = (i, 0, 0) and
αi(1) = (δ(b)(i), 0, 1). This allows us to interpret a braid as a loop in the
space of all the subset of the plane consisting of n points, that is

ΓnR2 = {{(x1, y1), . . . , (xn, yn)} ⊂ R2} .

Namely, such loop α : [0, 1]→ ΓnR2 is defined by

α(t) = {(x1(t), y1(t)), . . . , (xn(t), yn(t))} .

As we have done for knots, we are now interested to define a notion of
isotopy equivalence between two braids.

Definition 2.1.2. Two geometric braids b and b′ on n-strings are isotopic if
b can be continuously deformed into b′ in the space of braids. That is, b and
b′ are isotopic by a level preserving isotopy F : b×{0, 1} → R2×{0, 1} such
that for all the s ∈ {0, 1}, Fs : b → R2 × [0, 1], Fs(x, y, z) = (x′, y′, z) and
then F1(b) = b′ and F0(b) = b with F0 = IdR2×[0,1]

It can be seen that the relation of isotopy is an equivalence relation on
the set of geometric braids on n-strings.

In accordance with the interpretation of a braid as a loop (mentioned
before), the isotopy between two braids corresponds to an homotopy between
loops in the configuration space.

As we have already done with knots, we can draw braids in a plane using
diagrams. Up to braid isotopy we can always assume that the projection
(and so the diagram) on the x− z plane respects the condition below.

There is a finite number of crossing points at which exactly two strands
meet: one of them is distinguished and it said to be undergoing (and the
other is overgoing).

24

Figure 2.1: An n-braid diagram.

2.2 The Braid group, Bn

Here, we see that n-braids form a group Bn, with respect to a certain nat-
ural composition. Then, we give an algebraic description of Bn in terms of
generators and relations.

Firstly, we define the product between two n-braids as follows. We put the
second braid on the top of the first one and then we rescale the z-coordinate
by a factor 1/2, in order to make the union into a new braid, with the
z−coordinate in [0, 1]. As an example, let see:

Figure 2.2: The composition of b and b′.

This definition of the product operation for braids is compatible with the
isotopy relation, hence the braid product induces a (well defined) product
between isotopy classes of braids.

Furthermore, we can prove that this is a group operation. In fact, the set
Bn and the product · satisfy the four requirements know as the group axioms.

25

The identity element consists of an n-braid with 0-crossings, while the inverse
element of a braid a ∈ Bn is b = τ(a) where τ : R2 × [0, 1] → R2 × [0, 1] is
the function that upside down the braid, inverting the arcs from the top to
the bottom, so

τ(x, t) = (x, 1− t) .
We also observe that all these properties are valid up to isotopy.

We are now able to define the Braid group.

Definition 2.2.1. Bn is the group the the isotopy classes of the n−braids
with the product defined above.

Braid groups were introduced explicitly by Emil Artin in 1925 (from which
the name Artin Braid group) although they were already implicit in a work
by Adolf Hurwitz (1891). According to the interpretation of the braids as
loops in the space of all the subsets of the plane (ΓnR2), Hurwitz defines the
Braid group as the fundamental group of the configuration space.

Theorem 2.2.2. The braid group Bn admits a presentation with n− 1 gen-
erators b1, b2, . . . , bn−1 and the braid relations

bibj = bjbi for |i− j| ≥ 2 ;

bibi+1bi = bi+1bibi+1∀i = 1, 2, . . . , n− 2 .

Proof. See [9].

Forgetting how the strands twist and cross, every braid determines a
permutation on n elements. The group of such permutations is Σn It has
three families of relations:

1. titi+1ti = ti+1titi+1∀i ;

2. titj = tjti∀i, j : |i− j| > 1 ;

3. t2i = 1∀i .

We observe that the first two families of relations are exactly the same of
the families of relations that we have in Bn. Thus

δ : Bn → Σn

define a surjective group homomorphism from the braid group to the
symmetric group.

26

2.3 Closed braid

Now, we are interested to associate to any given n-braid a link, by connecting
the endpoints of the arcs a1, . . . , An.

We consider two different ways to do that: the trace closure and the plat
closure. Actually, while the former is defined for any n, the latter is defined
only when n is even.

Definition 2.3.1. The trace closure of a braid b corresponds to the link
obtained by connecting, one by one, all the strands at the top to the corre-
sponding strands at the bottom, with parallel arcs on the right of the braid
that do not meet each other. We denote it btr:

Figure 2.3: An example of the trace closure of a 4-strand braid.

Definition 2.3.2. The plat closure of a 2n−strand braid b corresponds to a
link obtained by connecting in pairs adjacent endpoints of the arcs a1, . . . , An
on the bottom and on the top of the braid. We call it bpl:

Figure 2.4: An example of the plat closure of a 4-strand braid.

27

As we know from the Alexander’s theorem (1923):

Theorem 2.3.3. For every link L there exists some braid b ∈ Bn such that
the trace closure of b is L.

Proof. See [11]. Actually, we will use the algorithmic proof given by P.Vogel.
Basically he shows that every link diagram can be transformed into a closed
braid by a sequence of II Reidemeister moves.

The trace closure of a n-braid is isotopic to the plat closure of a 2n-braid,
as it can be seen in figure:

And we have the following analogue of Alexanders theorem

Theorem 2.3.4. For every link L there exists some braid b ∈ B2n such that
the plat closure of b is L.

Finally, in order to know when the trace closure of two braids represent
the same knot (or link), we use the Markov moves.

Definition 2.3.5. Let β be a n−braid, β ∈ Bn+1,

first type let γ be another generic n−braid,

β → β′ = γβγ−1 ;

second type let bn be the generator of the Bn+1 group,

β → β′ = βbn , β′ = βb−1
n .

Theorem 2.3.6. Let b and b′ be two (oriented) braids not necessarily with
the same number of strings. The trace closure of b and b′ represents the same
(oriented) knot (or link) K if and only if b can be deformed in b′ with a finite
number of Markov moves (or their inverses), i.e. it exists a finite sequence

b = b0 → · · · → bm = b′

such that, for i = 0, . . . ,m− 1, bi+1 is obtained from bi by a Markov move.

28

2.4 Hecke Algebra

In this section we introduce the algebraic structure needed to give an al-
gebraic description of the Kauffman polynomial and the Jones polynomial
based on braids.

Definition 2.4.1. Let K be a field and q ∈ K − {0}. ∀n ≥ 1, Hn is the
K-algebra generated by t1, t2, . . . , tn−1 with the relations:

titi+1ti = ti+1titi+1 ∀i

titj = tjti ∀i, j : |j − i| > 1

t2i = (q − 1)ti + q ∀i
Hn is an associative (but not commutative) algebra. It can be seen as the

free algebra generated by the two-sided ideal generated by the relations above.
We call Hn Hecke Algebra.

We observe that for every n ≥ 1 there is a natural inclusion

in : Hn−1 ⊂ Hn .

Proposition 2.4.2. There exists an isomorphism

φ : Hn ⊕Hn ⊗Hn−1 Hn → Hn+1 (2.1)

φ(a,
∑
i

bi ⊗ ci) = an +
∑
i

bitnci

(an, bi, ci ∈ Hn while tn ∈ Hn+1).

Proof. The proof is divided into four steps.

1. φ is well defined.

Let u ∈ Hn−1, thus it is a linear combination of monomials in t1, . . . , tn−2

that commute with tn in Hn+1. We want to check if φ(bu⊗c) = φ(b⊗uc).

φ(bu⊗ c) = butnc , φ(b⊗ uc) = btnuc

Hence
butnc = btnuc ,

because all the components of u commute with tn. Thus, φ is well
defined.

29

2. φ is surjective.

We have to show that Hn+1 is generated as a vector space on K by the
monomials with, at most, one tn.

By induction on n and on the number of tn’s, let have two occurrence
of tn, thus M = M1tnM2tnM3 where M2 is a monomial in t1, . . . , tn−1.

• If M2 does not contain tn−1:

M = M1M2t
2
nM3 = (q − 1)M1M2tnM3 + qM1M2M3 ,

and thus we decrease the number of tn’s.

• If M2 contains one tn−1, thus M2 = M ′tn−1M
′′, where M ′,M ′′ are

two monomials in t1, . . . , tn−2 that commute with tn.

M = M1tnM
′tn−1M

′′tnM3 = M1M
′tntn−1tnM

′′M3 = M1M
′tn−1tntn−1M

′′M3 ,

and thus we decrease the number of tn’s.

Then, any element of Hn+1 is a sum a +
∑

i bitnci, with a, bi, ci ∈ Hn.
Thus φ is surjective.

3. Monomial in normal form generate Hn+1 over K.

Let consider the lists of monomials:

• S1 = {1, t1} ,

• S2 = {1, t2, t2t1} ,

• S3 = {1, t3, t3t2t1} ,

• . . .
• Sn = {1, tn, tntn−1, . . . , tntn−1 · · · , t1}

and
vi ∈ Si ⇒ ti+1vi ∈ Si+1 .

We call monomial in normal form the monomial M = u1 · · ·un for all
possible choices of ui ∈ Si, for i = 1, . . . , n; they are (n+ 1)! .

We prove that this monomials M generate Hn+1 as a K-space. Conse-
quently:

30

dimKHn+1 ≤ (n+ 1)! (2.2)

dimK{Hn ⊕Hn ⊗Hn−1 Hn} ≤ (n+ 1)! (2.3)

We may assume that the monomials M generate Hn as a K-space. We
want to check if this holds also for Hn+1 .

Hn+1 is generated on K by the monomials M0 and M = M1tnM2 with
M0,M1,M2 monomials in t1, . . . , tn−1.

• For M0 there is a trivial proof;

• For M = M1tnM2: let M2 be a K-linear composition of monomials
v1, v2, . . . , vn−1 with vi ∈ Si for i = 1, · · · , n− 1.

M1tnv1 · · · vn−1 = M ′
1tnvn−1 = m′1un .

AlsoM ′
1 is a linear composition of monomials of the forms u1, . . . , un−1

with ui ∈ Si for i = 1, · · · , n− 1.

Thus, M is a linear combination of monomials u1 · u2 · · ·un as we want
and (2.2) holds. This also shows that Hn ⊗Hn−1 Hn is spanned over K
by the subspace Hn ⊗ un−1 with un−1 ∈ Sn−1. Therefore (2.3) holds.

4. Monomials having the normal form M = u1 · · ·un with ui ∈ Si for i =
1, . . . , n−1 are K- linearly independent and hence φ is an isomorphism.

Let Σn+1 be symmetric group on {1, . . . , n + 1}, and si be the trans-
position (i, i + 1). Thus π ∈ Σn+1 is of the form π = w1 · · ·wn with
wi ∈ {1, . . . , sisi−1 · · · s1}.
We define l : Σn+1 → N as the word length function in Σn+1 relative
to the generators {s1, s2, . . . , sn}. For i = {1, . . . , n} we define Li ∈
EndK(KΣn+1) with

Li(π) =

{
siπ, if l(siπ) > l(π)

qsiπ + (q − 1)π, if l(siπ) < l(π)

The crucial fact is that there exists an algebra map

L : Hn+1 → EndK(KΣn+1)

31

such that L(ti) = Li for i = 1, . . . , n. We assume that the endomor-
phisms Li ∈ EndK(KΣn+1) satisfy the defining relations in definition
(2.4.1).

Let now consider a monomial in normal form M = u1 · · ·un such that
ui = titi−1 · · · ti−j, then

L(M) : 1 7→ w1 · · ·wn

where wi = sisi−1 · · · si−j.
We already know that all the (n+ 1)! elements of Σn+1 are of the form
w1 · · ·wn. Such elements are K-linearly independent in KΣn+1.

Thus, as the map from Hn+1 to KΣn+1 (x→ L(x)(1)) is K- linear, the
elements M = u1 · · ·un in the normal form are linearly independent
and dimK(Hn+1) = (n+ 1)! .

A dimension count prove that the surjective map φ is an isomorphism.

The fundamental idea of Jones, which led him to the definition of his
polynomial, is the construction of the trace function Trn described below.

Definition 2.4.3. A trace is a linear function from an algebra A to C

tr : A⇒ C

that satisfies tr(XY) = tr(Y X) for every two elements X,Y in the algebra.

Theorem 2.4.4. For every z ∈ K there exists a unique family of applications
Trn : Hn → K which are K-linear but not algebra homomorphisms, i.e. they
do not respects the algebra product, and they satisfy the below properties:

1. this diagram commutes:

32

2. Trn(1) = 1;

3. Trn(xy) = Trn(yx);

4. Trn+1(xtny) = zTrn(xy) ∀x, y ∈ Hn

Proof. See [5].

2.5 Jones polynomial.

In section 2.2 we saw that there exists a homomorphism between Bn, the
braid group, and Σn, the permutations group.

Our purpose is to find a function from Bn to an algebra K. Remembering
that in the section 2.4 we have a family of applications

Trn : Hn → K ,

it will suffice to find a function ρn from Bn to Hn, and then take the compo-
sition: for q ∈ C and z ∈ Z

Vq,z : Bn
ρn−→ Hn

Trzn−−→ K(q, z) .

In that way b ∈ Bn will become Vq,z(b) = vb(q, z) ∈ K[q, q−1, z, z−1] ⊂ K(q, z).

Given q ∈ C and z ∈ Z, for every braid b we can define:

Wb(q, z) =

(
1

z

)(n(b)+γ(b)−1)/2(
q

z − q + 1

)(n(b)−γ(b)−1)/2

Vb(q, z)

where n(b) is the number of the strands of b and γ(b) is the number of the
crossings.

Wb(q, z) ∈ K[q±
1
2 , z±

1
2] and WS1(q, z) = 1 .

Recalling the last construction of the map Vb,

Wb(q, z) = Tr

((
1

z

)(n(b)+γ(b)−1)/2(
q

z − q + 1

)(n(b)−γ(b)−1)/2

ρ(b)

)

33

Remembering that

the invariant will be:

Wb±(q, z) = Tr

((
1

z

)(n(b±)+γ(b±)−1)/2(
q

z − q + 1

)(n(b±)−γ(b±)−1)/2

ρ(b±)

)

In order to simplify the writing, we say that

Wb(q, z) = Tr(cρ(b)) = cTr(ρ(b)) ;

Wb+ = Tr(c
(

1
z

) 1
2

(
q

z−q+1

)− 1
2
ρ(b+)) ;

Wb− = Tr(c
(

1
z

)− 1
2

(
q

z−q+1

) 1
2
ρ(b−)) .

Now, we multiply Wb+ and Wb− for two appropriate coefficients:(
z

z−q+1

) 1
2
Wb+ = cTr(q−

1
2ρ(b+))

(
z

z−q+1

)− 1
2
Wb+ = cTr(q

1
2ρ(b−)).

Subtract the former to the latter:(
z

z − q + 1

) 1
2

Wb+ −
(

z

z − q + 1

)− 1
2

Wb+ = cTr(q−
1
2ρ(b+))− q

1
2ρ(b−)).

(2.4)

34

Taking into account the expression of the ρ(b±):

Figure 2.5: ρ(b+) = ρ(b1)tiρ(b2) ρ(b−) = ρ(b1)t−1
i ρ(b2).

we can write that

cTr(q−
1
2ρ(b+))− q

1
2ρ(b−)) = cTr

(
ρ(b1)(q−

1
2 ti − q

1
2 t−1
i)ρ(b2)

)
.

First, let us compute (q−
1
2 ti − q

1
2 t−1
i). We have

(q−
1
2 ti−q

1
2 t−1
i) =

(
q−

1
2 ti − q

1
2

(
ti
q
− q − 1

q

))
=
q

1
2 (q − 1)

q
= q

1
2 (1−q−1) = q

1
2−q−

1
2

Thus, we get

cTr((q
1
2 − q−

1
2)ρ(b1)ρ(b2)) = cTr((q

1
2 − q−

1
2)ρ(b))

c(q
1
2 − q−

1
2) Tr(ρ(b)) = (q

1
2 − q−

1
2)Wb(q, z)

And so, the expression [2.4] becomes(
z

z − q + 1

) 1
2

Wb+ −
(

z

z − q + 1

)− 1
2

Wb+ = (q
1
2 − q−

1
2)Wb(q, z) .

Now we can define the two polynomials. First of all we change (for conve-
nience) the variables:

x =

(
z

z − q + 1

) 1
2

y = q
1
2 − q−

1
2 .

35

The Kauffman Polynomial is:

PK(x, y) = Wβ(q, z) and x−1PK+(x, y)− xPK−(x, y) = yPK(x, y).

For y = x
1
2 −x− 1

2 we obtain the Jones Polynomial in two variables and its
characteristic equation is

x−1VK+(x)− xVK−(x) = (x
1
2 − x−

1
2)VK(x) .

36

Chapter 3

Temperley Lieb Algebras

In this third chapter we study the Temperley-Lieb algebras TLn(d). These
are the algebraic ambient where we will develop the quantum algorithm for
the approximation of the Jones Polynomial. Indeed, we will see that there
exists a representation of Bn in the TLn(d) algebra and that the Jones Poly-
nomial can be defined as a certain trace function on the image of the braid
group in TLn(d). Moreover this trace has an additional property (Markov
property) that makes it unique. So, in the end of the chapter, our goal will
be the approximation of this trace function (see Chapter 5).

3.1 The TLn Algebra

The starting point of this chapter is the Temperley-Lieb algebra, which has
played a central role in the discovery by Vaughan Jones of his new polynomial
invariant of knots and links and in the subsequent developments of knot
theory over the past two decades.

We begin with the algebraic presentation:

Definition 3.1.1. Let n ∈ Z and d ∈ C. The Temperley-Lieb Algebra
TLn(d) is the algebra generated by 1, e1, . . . , en−1 with the relation:

eiej = ejei, |i− j| ≥ 2;

eiei±1ei = ei;

e2
i = dei.

37

In order to describe geometrically this algebra we will use the Kauffman
n-diagrams:

Definition 3.1.2. Let Rn be a rectangle with n marked boundary points on
the top edge and on the bottom edge. A Kauffman n-diagram is a picture
draw inside Rn consisting of n non-intersecting curves that begin and end at
distinct marked boundary points.

We consider two diagrams equal if they are isotopically equivalent keeping
the boundary fixed.

Figure 3.1: Examples of Kauffman n-diagrams.

Definition 3.1.3. gTLn(d) is the vector space formed by the linear combi-
nation of Kauffman diagrams and coefficients in C .

Then, these Kauffman diagrams are the basis of the vector space gTLn(d) .
In order to define the Algebra structure, we describe the operation of

product that we use in the TLn(d) algebra.
This operation can be separate into two parts:

1. we concatenate the two diagrams as we did for braids (one on the top
of the other);

2. we replace the k closed components with a proper coefficient dk ∈ C.

38

Figure 3.2: An example of the multiplication rule.

Thus, after extending the multiplication rule to all the elements we can
obtain another algebra gTLn(d).

Theorem 3.1.4. The map ψ : TLn(d)→ gTLn(d), defined by ψ(ei) = ci, is
an isomorphism of algebras.

Such ci are calles capcups :

Property 3.1.5. Each Kauffman diagram can be written as the product of ci
diagrams, thus these ci, for i = 1, . . . , n−1, are the generators of the algebra
gTLn(d) .

Proof. See [10].

39

3.2 Representing Bn into TLn

We define a map from the braid group to the Temperley-Lieb Algebra.

Definition 3.2.1. For each a ∈ C such that d = −a−2 − a2 we define
ρd : Bn → TLn(d) such that

ρd(bi) = aei + a−11 . (3.1)

∀bi generator of Bn and ∀ei generator of TLn(d) .

Property 3.2.2. The mapping that we have just create is a representation
of Bn in TLn(d).

Proof. We have to check if the relation of the braid group are satisfied by ρd.

• for |i− j| > 1, ρd(bi) commutes with ρd(bj) since ei commutes with ej (see
relation 1 of the TLn);

•
ρd(bi)ρd(bi+1)ρd(bi) = ρd(bi+1)ρd(bi)ρd(bi+1) :

ρd(bi)ρd(bi+1)ρd(bi) = a3eiei+1ei + aei+1ei + ae2
i + a−1ei + aeiei+1 +

a−1ei+1 + a−1ei + a−3

ρd(bi+1)ρd(bi)ρd(bi+1) = a3ei+1eiei+1+aeiei+1+ae2
i+1+a−1ei+1+aei+1ei+

a−1ei + a−1ei+1 + a−3.

Since d = −a−2 − a2,

a−1 + ad+ a3 = a3 + (−a−2 − a2)a+ a−1 = a3 − a3 − a−1 + a−1 = 0

Then, after removing equal terms and applying the relations of the TLn(d),
the wanted equality becomes

(a−1 + ad+ a3)ei = (a−1 + ad+ a3)ei+1. (3.2)

Let τ be a linear representation of TLn(d), we will use the representation
given by the ρd to derive a linear representation of Bn by composition. Thus,
we define the map φ by specifying its action on the generators bi of Bn:

φ(bi) = φi = τ(ρd(bi)) = aτ(ei) + a−11 .

40

Property 3.2.3. If |a| = 1 and τ(ei) are Hermitian for all i, the map φ is
a unitary representation of Bn.

Proof.

τ(ρd(bi))τ(ρd(bi))
† = (a−1I + aτ(ei))((a−1)∗I + a∗τ(ei)

†) =

I + a−2τ(ei) + a2τ(ei) + dτ(ei) = I .

3.3 Markov trace

Definition 3.3.1. The Markov trace is a linear function from the algebra
gTLn(d) to C

tr : gTLn(d)→ C .

It is a trace function (see definition 2.4.3) uniquely determined by this prop-
erty:

if X ∈ TLn−1(d) then tr(Xen−1) = 1
d
tr(X) : the Markov property.

Definition 3.3.2. The function tr : TLn(d)→ C, defined as

tr(K) = da−n

is the Markov trace.
Where n is the the top and the bottom labelled points of K connected with

non-intersecting curves and a is the number of loops of the resulting diagram.
We can extend tr to all of gTLn(d) by linearity.

41

Figure 3.3: An example of Markov trace on a Kauffman diagram.

3.4 Path model representation

Now, we want to describe also a different representation of TLn(d) defined
for d = 2 cos(π/k) (due to Jones himself): the path model representation.
Let k ∈ Z and Gk be the straight line graph with k − 1 vertices and k − 2
segments.

Let Qn,k be the set of all the paths of length n on the graph Gk starting
from the leftmost vertex.

Given q ∈ Qn.k, we describe it by a sequence of vertices of Gk :
q(0), q(1), . . . , q(n− 1), where q(i) in the adjacent vertex of q(i+ 1).

We take the vector space Vn,k consisting of the linear combinations of the
elements of Qn,k, and these become a basis elements of the vector space.

Now we construct the path model representation

τ : TLn(d) −→ End(Vn,k)

In that way, x ∈ TLn(d) becomes τ(x) : Vn,k → Vn,k .

42

We take a Kauffman n-diagram T and the description of τ(T) is given by
the matrix entry τ(T)q′,q for each pair of q, q′ ∈ Qn,k .

To do this we look at the diagram and we consider the regions in which
the rectangle is separated by the strands. We label the interval in which the
bottom and the top edge are divided by.

Figure 3.4: An example of labelled Kauffman diagram.

The n marked points of the Kauffman diagram divide the top and the
bottom boundary into n+1 segments (called gaps).Two gaps that bound the
same region in the diagram are called connected.

Definition 3.4.1. We say that the pair (q′, q) is compatible with T if, once
label the gaps on the bottom from left to right by q(0), q(1), . . . , q(n) and label
the gap on the top from left to right by q′(0), q′(1), . . . , q′(n), then any two
connected gaps are labelled by the same vertex of Gk. Thus, we can associate
the label with the region.

The matrix entry τ(T)q′,q will only be nonzero if the pair of paths (q′, q) is
compatible with T . To each local maximum and minimum of the Kauffman
diagram T , we associated a complex number as follows (it depends on the
label of the regions up and down the diagram):

The matrix element τ(T)q′,q, for a compatible pair (q′, q), is defined as
the product of the appropriate complex numbers over all local maxima and
minima in T .

43

In order to have this τ(T) to be well defined, we need to show that it is
invariant under isotopy of Kauffman diagrams.

In order to have an isotopic move we have to create, or eliminate, local
maxima or minima in pairs.

Proposition 3.4.2. The necessary and sufficient condition for a map to be
well defined is:

a`−1d` = 1 = b`+1c`. (3.3)

Moreover, if we want to produce a representation of TLn(d), the coefficients
a`, b`, c` and d` have to satisfy the equation (3.3) and

d = a`c` + b`d` (3.4)

Proof. To proof (3.4) we need to verify that the τ(ei) matrices satisfy the
relations mentioned in 3.1.1, so they the matrix elements of both sides of the
equalities have to be equal. Apply the operator τ to the product element is
equal to apply τ to the single element that occurr in the product itself.

In the first two relations no loops are created when the operators are
multiplied. The verification follows from the isotopy invariance of τ (3.3).

The third relation follows from (3.4), using that a loop is created and
there are only two possible ways to label the region.

We would like to have the τ(ei) to be Hermitian: we add the further
equation:

a` = c∗` , b` = d∗` . (3.5)

Then, after solving the equations (3.3-3.5), we can derive the definition
of τ .

Proposition 3.4.3. Define λ` = sin
(
π`
k

)
for ` ∈ {1, . . . , k − 1}. Then

a` = c∗` =
√

λ`
λ`−1

and b` = d∗` =
√

λ`
λ`+1

satisfy equations (3.3-3.5), with

d = 2 cos
(
π
k

)
.

Using these coefficients, we have the definition of τ(ei):

Definition 3.4.4. τ(ei)q,q′ = 0 if (q, q′) is not compatible with ei.

otherwise, for a compatible pair (q, q′), τ(ei)q,q′ is the product of two coeffi-
cients (the maximum and the minimum in ei).

44

Now, having the definition of τ(ei) we can extend it to TLn(d) . Finally,
for a = ie−π/2k and τ(ei) Hermitian. We define:

Definition 3.4.5. The unitary path model representation of Bn is defined to
be ϕ(b) = τ(ρd(b)).

3.5 The Jones Polynomial

In the context of gTLn(d) the definition of the Kauffman and the Jones
polynomials can be reviewed in another way.

Consider a link L that corresponds to the trace closure of a braid b. All
the crossings are only inside b and each crossing resolution can be :

Theorem 3.5.1.

Pbtr(a) = (−a)3w(btr)dn−1tr(ρd(b)) .

Proof. The Jones Polynomial of an oriented link L is

VL(a−4) = Vbtr(a
−4) = Pbtr(a) = (−a)3w(L)〈L〉 (3.6)

where w(L) is the writhe of the oriented link L and 〈L〉 is the bracket state
sum of L (ignoring the orientation).

Using this equation we need to prove that 〈btr〉 = tr(ρd(b))d
n−1.

There exists a bijective correspondence between states that appear in the
bracket sum 〈btr〉 and the Kauffman n−diagrams that appear in ρd(b).

The weight of an element in the bracket state sum that corresponds to
the state σ is aσ

+−σ−d|σ|−1 .
The corresponding Kauffman n−diagram appears in ρd(b) with the weight

aσ
+−σ− .
It remain to show that, for each σ, the trace of the Kauffman n−diagram

corresponding to σ, times dn−1, equals to the remaining factor in the contri-
bution of σ to the bracket state sum, d|σ|−1 . That is true since the definition
of the trace of a Kauffman diagram is exactly d|σ|−n.

45

Chapter 4

Quantum computation

“I think I can safely say that no one understand Quantum
Mechanics.”Feymann

Quantum computing is a new approach to computation based on Quan-
tum Mechanics. Nowadays, efficient quantum algorithms have been discov-
ered; they are algorithms for problems that were suppose not be treatable (in
a classical sense). It is obvious that the implementations of such algorithms
require quantum computer, but, at the moment, these do not exist.

This area was developed in the last years of the twentieth century and has
to be thought as a new approach to the computation based on the observation
that “Information is physical”(Landauer).

As we will see, the information will be codified by physical systems and
will be elaborated by physical operations. Therefore we cannot prescind from
the physical laws of the Quantum Mechanic.

4.1 Algebra background

Quantum mechanic is based on linear algebra. The formal structure of quan-
tum mechanics is due to Dirac and Neumann. By using this formulation,
we know that a state of a physical system is identified with a ray in a finite
dimensional Hilbert space H. In the finite dimensional complex vector space
a Hilbert space is exactly the same thing as an inner product space.

In this section we briefly recall some basic algebraic notions and results.
We refer to [6] and [7] for further details.

46

Consider a n-dimensional Hilbert spaceH that is a complex inner product
space, i.e. H is a complex vector space on which there is a inner product asso-
ciating to each pair of elements of H. Fixed a orthonormal basis |1〉, . . . , |n〉,
we can write |v〉 and we can think that this |v〉 is a column vector of H:

|v〉 =
∑
i

vi|i〉 vi ∈ C .

〈v|, instead, indicates the linear form on H. It can be seen as the dual
vector in respect to the scalar product

〈v|(|v′〉) = 〈v|v′〉 .

So,regarding the dual basis, it denotes the row vector of the space H .
In 1930 Dirac introduced this notation, and we used to call 〈·| bra and |·〉

ket. 〈v|v′〉 is the inner product that operates in Hilbert space H. In fact, the
state of a physical system is identified with a ray in the complex separable
Hilbert space, H.

A convenient way to define linear operators on H is given by the outer
product. Let V and W be to vector spaces, |v〉 ∈ V and |w〉 ∈ W , we define
the outer product |w〉〈v| as a linear operator from V to W such that, for all
the |v′〉 ∈ V we have

(|w〉〈v|)(|v′〉) = |w〉〈v|v′〉 = 〈v|v′〉|w〉

where 〈v|v′〉 is a complex number. Let |i〉 be an orthonormal basis of V such
that |v〉 =

∑
i vi|i〉 and 〈i|v〉 = vi, then(∑

i

|i〉〈i|

)
|v〉 =

∑
i

|i〉〈i|v〉 =
∑
i

vi|i〉 = |v〉 .

This equality holds for all |v〉 ∈ V , thus
∑

i |i〉〈i| must be the unit operator
and it is known as completeness relation for orthonormal vectors.

The spectral decomposition is an extremely useful representation theorem
for normal operators.

Definition 4.1.1. A normal operator on a complex Hilbert space H is a
continuous linear operator N : H ⇒ H that commutes with its Hermitian
adjoint N∗

NN∗ = N∗N .

47

In particular we call N a unitary operator if N∗ = N−1 and N an hermitian
operator if N∗ = N .

Theorem 4.1.2. An operator A on a vector space V is normal if and only if
it is diagonalizable, i.e. the transformation matrix of this operator is diagonal
respect to some orthonormal basis for V .

4.2 Postulates of the Quantum Mechanics

Now, we are in position to enunciate the four postulates of quantum me-
chanics: they must be consider as a set of basic statements representing a
starting point of quantum theory in axiomatic form.
First postulate. (Quantum states). We associate each physical system with
a Hilbert space H, representing the space of the possible states of the system.
Since vectors that differ by a phase factor are physically indistinguishable
states, we can identify any state by a unite vector in this Hilbert space H.

The most simple quantum system that we know is the qubit (the quan-
tum analogue to classical bits), associated to a 2-dimensional Hilbert space,
isomorphic to C2.

In addition to the basis states, |0〉 and |1〉, we can have all the other
possible states defined by their linear combinations also called linear overlaps:

|ψ〉 = c0|0〉+ c1|1〉, with c0, c1 ∈ C and |c0|2 + |c1|2 = 1 .

Considering cj = rje
iφj with j = 0, 1 we can remove eiφ0 , phase factor

common to all the components (and so it does not lead to observable effects).

|ψ〉 = r0|0〉+ r1e
i(φ1−φ0)|1〉 .

Furthermore, if ψ has unit norm, then

|ψ〉 = cos
ϑ

2
|0〉+ eiφ sin

ϑ

2
|1〉 .

In that case, the state is parametrizated by the angles ϑ and φ = φ1−φ0.
They all are spherical coordinates of a point on the surface of a sphere with
unit radius S2.

Using the Cartesian coordinates,

x = cosφ sinϑ, y = sinφ sinϑ z = cosϑ .

48

The points of the surface of S2 parametrize the Hilbert space of the state
of a single qubit: the |0〉 (North Pole) and the |1〉 (South Pole) are the only
points that correspond to classical bits. All other points do not correspond to
something classical and represent a non-trivial superposition of basis states.

Unlike the bit, that can only have values 0 and 1, the qubit can be in one
of the infinite points on the surface of the Block sphere.

Second postulate. (Composite system). The space of the states of a com-
posite system is the tensor product of the spaces of states of each subsets.

Let consider two non-interacting systems A and A′. We associate to them
HA and HA′ respectively. The Hilbert space of the composite system is the
tensor product:

HA ⊗HA′ .
If the first system is in the state |ψ〉A and the second in the state |ψ′〉A′ , the
state of the composite system is:

|ψ〉A ⊗ |ψ′〉A′ .

We call this kind of states separable states, or product states.
Not all the states are separable: fix a basis {|i〉A} for HA and a basis

{|j〉A′}. The most general state in HA ⊗HA′ is of the form

|φ〉AA′ =
∑
i,j

ci,j|i〉A ⊗ |j〉A′ .

The state is separable if ci,j = cAi c
A′
j , that is |ψ〉A =

∑
i c
A
i |i〉A and |ψ′〉A′ =∑

j c
A′
j |j〉A

Otherwise, the state is called non-separable or entangled state.

Third postulate.(System evolution). Every physical process concerning an
isolated system is described by an unitary transformation on the space of
states.

49

We take the states |ψ〉 at the time t and |ψ′〉 at the time t′. They are
related by an unitary operator

U : |ψ′〉 = U |ψ〉 .

The unitary operator in the Hilbert space associated to C2n has to be seen
as a quantum gates that acts on a set of qubits. Thus, the evolution of an
isolated system can be seen as a computational process.

The most important single qubit unitary operators are the I matrix and
the following Pauli operators:

σ1 = σx =

(
0 1
1 0

)
σ2 = σy =

(
0 −i
i 0

)
σ3 = σz =

(
1 0
0 −1

)

Forth postulate. (Measure). The measure of the observable M is described
by an Hermitian operator M on the spaces of states. Let M =

∑
mmPm the

spectral decomposition with Pm projectors on the eigenspaces of M. Thus, the
possible results of the measure will be the corresponding eigenvalues m.

When we measure the observable M and the system is in the state |ψ〉,
the probability of obtaining the result m is

Pr(m) = 〈ψ|Pm|ψ〉 ,

while, the system’s state immediately after the measure is

|ψ′〉 =
Pm|ψ〉√
p(m)

.

Furthermore, the average of the result of the measure is

〈M〉 ≡
∑
m

mPr(m) =
∑
m

m〈ψ|Pm|ψ〉 = 〈ψ|M |ψ〉 . (4.1)

50

4.3 The quantum computer

A quantum computer is a device for the treatment of the information that
uses the typical phenomena of quantum mechanics. A classical computer
measures the amount of data in bits while the elementary information of a
quantum computer, as already mentioned, is the qubit. The principle is that
the physical properties of quantum particles can be used to represent data
structures, and quantum mechanics can be used to perform operations on
these data.

Keeping on the analogy between classical and quantum computer, as a
classical computer consists of an electrical circuit with logic gates, a quan-
tum computer consists of a quantic circuit with logic quantum gates, which
manipulate the information. One of the simplest classical single-bit gate is
the NOT gate:

0→ 1 1→ 0 .

Instead, the quantum NOT-gate acts in the following linear way:

α|0〉+ β|1〉 → α|1〉+ β|0〉 .

We can also represent it by the matrix:

X =

(
0 1
1 0

)

Thus, having the quantum state α|0〉+β|1〉 written in a vector form

(
α
β

)
|0〉 is replaced by the state corresponding to the first column of X, while

|1〉 is replaced by the second column of X. Then,

X

(
α
β

)
=

(
β
α

)
Any other unitary matrix can be seen as a quantum gate.

Unlink the classical gates, there are many single-quantum bit gates that
are not trivial. The most important are:

X-gate X = σx It exchanges the column vector in a row vector (with the
same values).

51

Y-gate Y = σy It exchanges the column vector in a row vector and it
exchanges the values (multiply the first for −i and the second for i.)

Z-gate Z = σz It leaves fixed |0〉 and exchanges the sign of|1〉;

H-gate

H =
1√
2

(
1 1
1 −1

)
. (4.2)

It sends |0〉 into (|0〉+ |1〉)/
√

2, and |1〉 into (|0〉 − |1〉)/
√

2.

The most important example of 2−qubit quantum gate is the CNOT-
gate. It acts on two qubits: the first one is the control qubit |c〉 and the
second one is the target qubits |t〉. It flips the target if and only if the
control qubit is 1.

In this case the transformation U works on a target qubit conditioned by
the control qubit. Namely, U c = U for c = 1 and U c = I if c = 0. Thus, the
CNOT-gate is the quantum analogue for XOR-gate:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Definition 4.3.1. A set of universal quantum gates is any set of gates to
which any possible operation on a quantum computer can be reduced. That
is, any other unitary operation on a finite dimensional state space can be
expressed as a finite sequence of gates from the set.

Theorem 4.3.2. The 1-qubit gates together with the CNOT-gate form an
universal set, i.e.

U ∈ U (2) ∪ {CNOT}

We refer to [7] for the proof.

We end this section by giving the definition of the Hadamard test, that
will be used in the algorithm that we will describe in Chapter 5.

52

Definition 4.3.3. The Hadamard test acts in this way:
we start with a two-register state

1√
2

(|0〉+ |1〉)⊗ |α〉

and we apply Q conditioned on the first qubit to get the state

1√
2

([|0〉 ⊗ |α〉] + |1〉 ⊗Q|α〉) ,

then we apply the Hadamard gate (4.2) on the first qubit and we output the
measurement. The output is 1 if the measurement result is |1〉, while is −1 if
the measurement result is |0〉. To get the random variable with the expectation
value is the imaginary part we have to start with the state 1√

2
(|0〉−i|1〉)⊗|α〉.

Property 4.3.4. If a state |α〉 can be generated and a unitary matrix Q
can be applied, both efficiently, then there exists an efficient quantum circuit
whose output is a random variable ∈ {1,−1} and whose expectation value is
Re〈α|Q|α〉 (or Im〈α|Q|α〉.)

Proof. The proof follows from the fourth postulate of the Quantum Mechanic.
In particular, from the equality that describe the average of the result of the
measure of an observable (4.1).

4.4 Classes of computational complexity.

The notion of quantum Turing machine was introduced by Deutsch as a
quantum version of the classical Turing machine Tm.

The quantum Turing machine is the theoretical model of a quantum com-
puter, and it is known as the universal quantum computer.

Definition 4.4.1. A quantum Turing machine (qTm) is a machine with a
finite number of states that has the following three fundamental components.

1. A finite process. It consists of a finite number p of qubits. We denote
the Hilbert space of the states of the process HP with the basis {⊗i|pi〉 :
pi = 0, 1}p−1

i=0 ;

53

2. A memory tape. It consists of a infinite number of qubits. Ideally there
is a qubit per cell and only a finite number of them will be active in
each computational step. We denote the Hilbert space of the states of
the process HM with the basis {⊗i|mi〉 : mi = 0, 1}+∞

i=−∞;

3. A cursor. It represents the interacting components between the control
units and memory tape. Its position is given by the variable x ∈ Z and
the Hilbert state associated is HC with the basis {|x〉 : x ∈ Z}

Overall, le Hilbert space that describe the space of the state of the quantistic
Turing machine is

HqTM = HC ⊗HP ⊗HM .

The basis vectors are

|x; p; m〉 = |x; p0, p1, . . . , pP1 ; . . . ,m−1,m0,m+1, . . . 〉

and they represent the states of the computational basis.

A quantum Turing machine works in fixed T -period steps and during each
step only the process and a finite part of the memory interact through the
cursor. While in the classical Turing machine we have a set of instructions,
here we have an unitary time evolution of the quantum states |ψ〉 ∈ HQTM .
For example after n computational steps, the quantum Turing machine state
will be:

|ψ(nT)〉 = Un|ψ(0)〉 with U unitary operator.

Now we are going to describe the computation of this machine. At each
computational step the framework x is examined and the state mx of the
framework x itself is read.

If the inner state is p, then the framework x is put in the state m′x. After
that, it is reached the inner state p’ and the head is shifted to one step to
the left, or to the right, or to both the direction.

Starting to a basis vector we get, after some computational steps, a state
that is the coherent superposition between different inner states of the ma-
chine, different position of the cursor and different states of the memory tape
(entangled state).

Once finished a convergent computation, the output is read by making
a measure on the tape itself. This process projects the state of the tape
on one of the possible results. Each of them is obtained with a probability
depending on the transition amplitudes of the computational steps.

54

Chapter 5

The algorithm

5.1 Classical algorithms

We have four classical algorithms that compute the Jones polynomial. They
take an oriented knot K as the input and return the Jones polynomial VK(x)
as the output. More precisely, the input is given by an oriented diagram D
of K and its complexity is the number n = n(D) of the crossings occurring
in D.

The first algorithm is based on the Kauffman approach to the Jones polyno-
mial, that is on definitions (1.3.5) and (1.3.9).

KAUFFMAN1 (K: oriented knot represented by an oriented diagram D)

begin

compute w(D) ;

ζ(D) := 0 ;

for any states s of D

compute σ(s) and γ(s) ;

ϑ(s) = tσ(s)(−t−2 − t2)γ(s)−1 ;

ζ(D) = ζ(D) + ϑ(s) ;

PK(t) := t−3w(D)ζ(D) ;

VK(x) := PK(x−
1
4) ;

55

return VK(x) ;

end.

Notice that the computation of w(D) only require a linear time with
respect to n. The reason why the algorithm takes an exponential time is
that we have to itemize all the 2n states of the diagram D.

The second algorithm, due to Conway, is based on the skein relation (1.1).

CONWAY (K: oriented knot represented by an oriented diagram D)

begin

if K is the unknot

then C(K) = 1 ;

else

choose one crossings of D to be inverted for making K into
unknot;

set K± = K depending on the sign of the choosen crossing ;

set K∓ = the knot obtained from K by inverting the choosen
crossings ;

set K0 = the knot obtained from K by resolving the choosen
crossing ;

VK∓(x) = CONWAY(K∓) ;

VK0(x) = CONWAY(K0) ;

VK±(x) = x∓1(x∓1VK∓(x)± (x−1/2 − x1/2)VK0(x)) ;

return VK±(x) ;

end

Actually, this algorithm can only be used for knots that have few cross-
ings. In fact, determining if k is an unknot is not a trivial action and it
does not take a polynomial time of resolution. The algorithm can be re-
formulated, fixing a priori a sequence of crossings that we have to inverted
in order to reduce K to the unknot. In this case we proceed in an iterative
manner and we do not have to check if the knot is trivial. The choice of the
sequence of the crossings mentioned before is made in a linear way.

56

The complexity of thus algorithm is exponential because the algorithm
referes twice to itself.

The third algorithm is based on the genuine definition thought by Jones
himself. It is based on theorem (2.4.4). In this algorithm we refere to another
algorithm that computes the Trn function.

TRACEn(h = tε1i1 t
ε2
i2
· · · tεγ(b)iγ(b)

)

begin

if h = 1

then Trn(h) := 1 ;

else

put h in the formh = a+
∑

i xitn−1yi, where a, xi, yi ∈ Hn−1

Trn(h) = TRACEn−1(a) + z
∑

iTRACEn−1(xiyi)

return Trn(h)

end

We observe that the algorithm ends when we reach n = 1 and the value
Tr1(h) = Trn(1) = 1, because the braid has no crossings.

Using tha above algorithm we introduce the Jones algorithm.

JONES (K: oriented knot)

begin

b := braid such that K = btr with n(b) strands and γ(b) crossings ;

set n(b) ;

set γ(b) ;

c :=
(

1
z

)(n(b)+γ(b)−1)/2
(

q
z−q+1

)(n(b)−γ(b)−1)/2

;

h := ρ(b) = tε1i1 t
ε2
i2
· · · tεγ(b)iγ(b)

;

WK(q, z) = c TRACEn(h);

PK(x, y) = WK((z
z−q+)

1
2 , q

1
2 − q− 1

2);

57

VK(x) = (x, x
1
2 − x− 1

2);

return VK(x)

end

This algorithm take an exponential time of resolution because the sub-
procedure that computes Trn referes twice to itself. In order to write the
knot K in term of braid closure (btr) we refer to the Vogel algorithm [11].
This algorithm can be performed in a order of n2 time complexity, with n
number of strands of btr.

The fourth algorithm uses the TLn algebras. It is based on the represen-
tation on the Bn group into TLn(d), in particular we refer to the definition
(3.3.2).

KAUFFMAN2 (K: oriented knot)

begin

b := braid obtained after the trace closure of K ;

compute w(K);

g := ρd(K) = (aeε1i1 + a−11)(aeε2i2 + a−11) · · · (aeεnin + a−11);

expand g as the sum of monomial terms t1 + t2 + · · ·+ t2n

for any ti

compute γ(ti), where γ(ti) is the number of loops in the corresponding
diagram of ti;

tr(ti) = dγ(ti)−n ;

tr(K) =
∑

i tr(ti) (that is the sum on all the elements that occur in g);

PK(t) = (−t)−3w(k)(−t−2 − t2)n−1tr(g);

VK(x) = PK(x−
1
4);

return VK(x)

end

58

This algorithm takes an exponential time of resolution due to the expan-
sion of ρd(K) in 2n factors.

It is important to underline the fact that all the above algorithms calculate
the exact Jones polynomial with a computational time that is exponential
with respect to the complexity of the input.

In principle, they take the same exponential time even when used to
evaluate the Jones polynomial at a single complex number.

5.2 Implementing the path model represen-

tation

Here we want to show an explicit and simple quantum algorithm, both for the
trace closure btr and for the plat closure bpl of a braid b [8], that approximate

the value of the Jones polynomial at the single complex number t = e
2πi
k . This

algorithm is efficient and can be performed in a polynomial time. However,
we do not know yet how this algorithm can approximate the Jones polynomial
and we refer to section (5.5).

First, we adapt the path model representation (section 3.4) in order to
work on qubits.

Definition 5.2.1. We define Pn,k,` to be the set of all sequences of bits
(p1, p2, . . . , pn) describing a path q(0), q(1), . . . , q(n) in Qn,k,` (see section 3.4)
according to the following rule:

pi =

{
0 if q(i) = q(i− 1)− 1
1 if q(i) = q(i− 1) + 1

(5.1)

Likewise, we define Pn,k to be the set of all sequences describing paths of

length n with no restriction on the final point. Thus, Pn,k =
⋃k
`=1 Pn,k,`.

We define Hn,k,` as the span of Pn,k,` in the Hilbert space of n qubits and
Hn,k as the span of Pn,k.

Moreover, we denote by

η : Vn,k → Hn,k (5.2)

the isomorphism sending the base element (q(0), q(1), . . . , q(n)) of Vn,k to the
corresponding base element (p1, p2, . . . , pn) of Hn,k

59

According to this isomorphism, we can define another linear represen-
tation of TLn(d), by composing the linear representation τ : TLn(d) →
End(Vn,k), already defined in section (3.2) and the η∗ : End(Vn,k)→ End(Hn,k),
isomorphism induced by the isomorphism η, i.e.

Φ : TLn(d)→ End(Hn,k) .

In order to see how Φ acts, let us apply it to each basis element ei ∈
TLn(d) and denote by Φi = Φ(ei) its image.

Let p = (p1, p2, . . . , pn) be the sequence of bit describing the path (q(0), q(1), . . . , q(n))
in Gk. We have these formulas that define the action of Φi:

Φi|p1, . . . , pi−1, 0, 0, pi+2, . . . , pn〉 = 0 (5.3)

Φi|p1, . . . , pi−1, 0, 1, pi+2, . . . , pn〉 = (5.4)

=
λq(i−1)

λq(i)
|p1, . . . , pi−1, 0, 1, pi+1, . . . , pn〉+

√
λq(i+1)λq(i−1)

λq(i)
|p1, . . . , pi−1, 1, 0, pi+1, . . . , pn〉

Φi|p1, . . . , pi−1, 1, 0, pi+1, . . . , pn〉 = (5.5)

λq(i+1)

λq(i)
|p1, . . . , pi−1, 1, 0, pi+1, . . . , pn〉+

√
λq(i+1)λq(i−1)

λq(i)
|p1, . . . , pi−1, 0, 1, pi+1, . . . , pn〉

Φi|p1, . . . , pi−1, 1, 1, pi+1, . . . , pn〉 = 0 (5.6)

We remember, from the 3.4.3, that λ` = sin
(
π`
k

)
and in the above formulas

(5.3-5.6) we adopt the convention that λj = 0 ∀j /∈ {1, . . . , k − 1}.

Proposition 5.2.2. Φ is a unitary representation of TLn(d) and Φi are Her-
mitian. Moreover, Φ induces a unitary representation φ : Bn → End(Hn,k)
by componing with ρd defined in (3.1). of the braid group Bn, operating on
Hn,k.

Proof. The proof follows from the properties of τ and the natural isomor-
phism describe in definition (5.2).

The operators φi = φ(bi) on Hn,k can be extended to the rest of the
sequences of pi /∈ Pn,k.

60

Proposition 5.2.3. For all i ∈ {1, . . . , n}, φi can be implemented on the
entire Hilbert space H of n qubits using poly(n, k) gates.

Proof. See [8].

Thus, we deduce that

Corollary 5.2.4. For every b ∈ Bn, with m crossings, there exists a quantum
circuit Q(b) that applies φ(b) to n qubits, using poly(m,n, k) elementary
gates.

Definition 5.2.5. We define TrΦ,n(W) for all the W ∈ Φ(TLn(d)) as

TrΦ,n(W) =
1

N

k−1∑
`=1

λ` Tr(W |`) ,

where W |` is the restriction of W in the subspace Hn,k,`, Tr is the standard
trace of the matrices and N =

∑
` λ` dim(Hn,`,k) (this sum is taken over all

the ` such that Pn,k,` is not empty.)

We observe that:

1. for any t ∈ TLn(d) , Φ(t)(Hn,k,`) ⊆ Hn,k,`: in fact Φi cannot change
the final point of a path since it only moves 01 to 10 and vice versa;

2. we claim that the function TrΦ,n(·) is a Markov trace, that is it satisfies
the property in (3.3.1);

Thus, by the uniqueness of the Markov trace, we have that TrΦ,n(φ(b)) =
tr(ρd(b)) and, using the formula (3.5.1), we have

Lemma 5.2.6. For all b ∈ Bn,

Vbtr(a
−4) = Pbtr(a) = (−a)3w(Btr)dn−1 TrΦ,n(φ(b)) .

5.3 The Algorithm Approximate-Jones-Trace-

Closure

We describe the algorithm already studied in [8] for a trace closure btr of a
braid b and we call it AJTC.

61

AJTC(K = btr, a = e−
2πi
k);

begin

d := −a2 − a−2 = 2 cos(π
k
) ;

compute w(btr) ;

for j=1:poly(m,n,k)

pick the state corresponding to a random path p ∈ Pn,k such

that Pr(p) ∝ λ`, with ` = q(n) ;

apply the Hadamard test to the operator φ(b) and the state p;

compute xj ;

compute yj ;

r := average (xj + yj) ;

Otr = (−a)3w(Btr)dn−1r;

return Otr .

Lemma 5.3.1. There exists a classical probabilistic algorithm that outputs a
random path Pn,k,` according to a distribution close to the uniform and this
algorithm works in polynomial time.

Theorem 5.3.2. Given a braid b ∈ Bn with n strands and m crossings and
given k ∈ Z, in polynomial time poly(m,n, k) the quantum algorithm AJTC,
except for an exponentially small probability, outputs Otr ∈ C such that

|Otr − VBtr(e
2πi
k)| < ε

(
2 cos

(π
k

))n−1

with d = −a2 − a−2 = 2 cos(π
k
) and ε = 1

poly(m,n,k)
.

Proof. Due to the lemma (5.2.6) the correctness of the Algorithm Approximate-
Jones-Trace-Closure follows simply because the output r satisfies

|r − TrΦ,n(φ(b))| ≤ ε

with ε = 1
poly(m,n,k)

time, except for an exponentially small probability.

62

The Hadamard test implies that the expectation value of xj for a fixed p
is Re(〈p|φ(b)|p〉).

The same expectation taken over a random p is∑
`,p∈Pn,k,` λ`Re(〈p|φ(b)|p〉)∑

`,p∈Pn,k,` λ`
=

∑
` λ`Re(Tr(φ(b)|`))∑
` λ` dim(Hn,k,`)

= Re(TrΦ,n(φ(b))) .

The same work has to be done for the imaginary part.
We consider the value xj with the Bernoulli distribution: it takes the

value 1 with probability p and −1 with probability 1 − p. We will call the
value xj as ξ.

Its expected values is

E(ξ) = −1 · (1− p) + 1 · p = 2p− 1 = µ

Its variance is

D(ξ) = E(ξ2)− (E(ξ))2 = 1− (2p− 1)2 =

= 1− (4p2 − 4p+ 1) = 4p− 4p2 = 4p(1− p) = σ2

Now we consider the independent sum of random variables all distributed
with the Bernoulli distribution: ηn = 1

n

∑n
i=1 ξi. We have that E(ηn) = µ

and D(ηn) = σ2

n
.

The normalized random variable is ηn = ηn−µ
σ√
n

.

Thus, the probability that this normalized random variable is less then

a value x goes asymptotically as Φ(x) = 1√
2π

∫ x
−∞ e

− t
2

2 dt and we can found

the estimation of P (|ηn − µ| > ε) that is equal to P (|ηn| > ε
√
n
σ

). It goes

asymptotically as σ
ε
√
n
e
ε2n
2σ2 .(Feller, An Introduction on probability theory and

its applications)
Thus, the output r satisfies the inequality |r − Trn(φ(b))| ≤ ε except for

an exponentially small probability.
The proof of the Theorem (5.3.2) follows.

5.4 The Algorithm Approximate-Jones-Plat-

Closure

We describe the algorithm already studied in [8] for a plat closure bpl of a
braid b and we call it AJPC.

63

AJPC(K = bpl, a = e−
2πi
k);

begin

λ` := sin π`
k

;

N :=
∑

` λ` dim(Hn,k,`) ;

compute w(bpl) ;

generate the state |α〉 = |1, 0, 1, 0, . . . , 1, 0〉 ;

for j=1:poly(m,n,k)

apply the Hadamard test to the operator φ(b) and to |α〉 ;

compute xj ;

compute yj ;

compute r := average (xj + yj) ;

Opl := (−a)3w(Bpl)d
3n
2
−1λ1

r
N
;

return Opl ;

Theorem 5.4.1. Given a b ∈ Bn with n strands and m crossings and given
k ∈ Z, in polynomial time poly(n,m, k) the quantum algorithm AJPC and
except a exponentially small probability, outputs Opl ∈ C with

|Opl − VBpl(e
2πi
k)| <

ε(2 cos(π
k
))

3n
2

N

with d = −a2 − a−2 = 2 cos(π
k
), ε the inverse of a polynomial in m,n and k

and N =
∑

` λ` dim(Hn,k,`) an exponentially big factor.

Proof. We observe that the plat closure of a braid b is isotopic to the trace
closure of a tangle c, that is a braid in which some of its crossings have been
replaced by a picture of a capcups form (see figure in definition 3.5).

64

Figure 5.1: c = b · n
2

capcups.

Thus, we relate the Jones polynomial of ctr to Tr(φ(b)|α〉〈α|) . The thesis
is now written in terms of trace closure a traces functions and we can apply
the formula (3.5.1)

The value of r can be approximated with 〈α|φ(b)|α〉, which is equal to
Tr(φ(b)|α〉〈α|) .

Finally, we need to describe better the connection between the projection
on |α〉 and the capcups.

It is easy to verify that Φ1Φ3 . . .Φn−1 applied to any other path different
from |α〉 gives 0. In fact, according to the definition (5.3-5.6) we know that
the operator Φi gives a non zero output only in two cases: (5.4) and (5.5).

Moreover, we restricted the strings to those that describe a path starting
to the leftmost vertex of Gk and thus the path never can start with a 0 which
means to take a step to the left (according to the definition), thus the only
possible path will be |1, 0, 1, 0, . . . , 1, 0〉 that is exactly |α〉.

The Φi commutes if their indices are more than one apart: so we can
apply Φ1, then Φ3 and so on. We also remember that the Φi operate on a
single pair of coordinates (the first two, then the second two, and so on):

Φn−1Φn−3 . . .Φ3Φ1|1, 0, 1, 0, . . . , 1, 0〉 =

= Φn−1Φn−3 . . .Φ3

(
λ2

λ1

|1, 0, 1, 0, . . . , 1, 0〉+

√
λ2λ0

λ1

|1, 0, 1, 0, . . . , 1, 0〉
)

=

= Φn−1Φn−3 . . .Φ3

(
λ2

λ1

|1, 0, 1, 0, . . . , 1, 0〉
)

. . .

65

(
λ2

λ1

)n
2

|1, 0, 1, 0, . . . , 1, 0〉 =

(
λ2

λ1

)n
2

|α〉 = d
n
2 |α〉 .

Thus,
Φn−1Φn−3 . . .Φ3

d
n
2

= |α〉〈α| . (5.7)

Using the definition 5.2.5 and the equation (5.7):

〈α|φ(b)|α〉 = Tr(φ(b)|α〉〈α|) =
N

λ1

Trn(φ(b)|α〉〈α|)

N

λ1

Trn

(
φ(b)

Φ1Φ2 . . .Φn−1

d
n
2

)
=

N

λ1d
n
2

Trn(φ(C))

By the uniqueness of the Markov trace, we have that Trn(φ(C)) = tr(ρd(C)).
Using 3.5.1:

Vbpl(a
−4) = Vctr(a

−4) = Pctr(a) = (−a)3w(ctr)dn−1 Trn(φ(c))

Thus, the proof of the Theorem is complete.

66

5.5 Conclusion e further direction

We want to mention the result of Aharonov and Arad concerning the com-
plexity of the problem of approximating the values of the Jones polynomial
[12].

Theorem 5.5.1. The problem of approximating the Jones polynomial of the
plate closure of a braid b at e

2πi
k , for k polynomial with respect to the size of

the input, with the accuracy given by Theorem 5.4.1, is BQP-hard.

BQP stands for bounded-error quantum polynomial. This is the class of
decision problems solvable by a quantum Turing machine in polynomial time
with error probability of at most 1

3
for all instances. It is the quantum ana-

logue of the completely class BPP (bounded-error probabilistic polynomial).
This is the class of decision problems solvable by a probabilistic Turing ma-
chine in polynomial time, with an error probability of at most 1/3 for all
instances.

A BQP-hard problem is a problem at least as hard as the hardest problem
in BQP. More precisely, a problem A is BQP-hard if and only if there is a
BQP-complete problem B that is polynomial time Turing-reducible to A.

A BQP-complete problem is the hardest problem in BQP. A is BQP-
complete if A is BQP and all the B in BQP are such that B ≤ A.

Thus, we can hope that this algorithm can be used to construct other
algorithms for BQP problems.

Now, we want to briefly discuss the relation between the exact computa-
tion of the Jones polynomial and the approximation of its value at the roots
of unit e

2πi
k .

We recall that a polynomial p(z), with coefficients in Q and degree d, is

unically determined by its value p(e
2πi
k) at any single root of unit such that

ϕ(n) > d, where ϕ(n) is the Euler function. The reason is that the minimal

polynomial of e
2πi
k over Q has degree ϕ(n) [13].

We notice that PK(x) is a Laurent polynomial with coefficients in Z and
minimal exponent greater −2n [1]. Thus, the polynomial UK(x) = VK(x)x2n

is a genuine polynomial with coefficient in Z and degree d < 3n [1]. Moreover,
the coefficients of such polynomial belong to the interval (−2n, 2n) [15]. Thus,

is sufficient to know the exact value of VK(e
2πi
k) with ϕ(k) > 3n. For example,

if k prime, we have k > 3n and we know, from the Bertrand’s postulate [14],
that this such prime exists and it is minor than 6n.

67

Now the problem is that the quantum algorithm does not outputs the
exact value of the Jones polynomial at e

2πi
k , but just an approximation. In

order to know to determine the exact value of VK(x) it is sufficient to know
the minimum distance between any two linear combination of the form

a0 + a1e
2πi
n + a2e

2 2πi
n + · · ·+ ade

d 2πi
n =

d∑
j

aje
j 2πi
n ,

where 3n < k < 6n and aj ∈ Z , aj ∈ (−2n, 2n) .
Actually, taking into account

|
d∑
j

aje
j 2πi
n −

d∑
j

a′je
j 2πi
n | = |

d∑
j

(aj − a′j)ej
2πi
n | = |

d∑
j

bje
j 2πi
n | , (5.8)

such minimal distance can be reduced to the minimum value of |
∑d

j bje
j 2πi
n |

with bj ∈ (−2n+1, 2n+1).

68

Now, there are some examples of the values of V (e
2πi
k).

If n = 2, 3, 4, 6 we observe in the figures that we have dicrete lattices.
The minimum diatance between any two possible values of such polynomial
is always 1.

Figure 5.2: n = 2, d = 1, h = 2 .

Figure 5.3: n = 3, d = 1, h = 2 .

69

Figure 5.4: n = 4, d = 1, h = 3 .

Figure 5.5: n = 6, d = 5, h = 2 .

70

On the contrary, for n = 5, 7, 8, . . . (and for all the other n), we observe
that the more h increase, the more the distance becomes small.

Figure 5.6: n = 5, d = 3, h = 2 .

Figure 5.7: n = 7, d = 1, h = 5 .

71

Figure 5.8: n = 8, d = 2, h = 5 .

It would be interesting to have an estimate of how this minimal distance
can decrease with respect to all the parameters.

72

Bibliography

[1] W.B.R. Lickorish, An Introduction to Knot Theory, Springer 1997.

[2] A. Sossinsky, Knots, mathematics with a twist, Harvard University
Press, Cambridge-Massachusetts London-England, 2002.

[3] K. Reidemeister, Elementare Begründung der Knotentheorie, Abh.
Math. Sem. Univ. Hamburg 5, 24-32, 1926.

[4] K. Reidemeister, Knot theory (Translation of Knotentheorie), BSC As-
sociates Moscow, Idaho, 1983.

[5] P. de la Harpe, M. Kervaire, C. Weber, On the Jones polynomial,
L’Enseign. Math. 32 (1986), 271-335.

[6] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Infor-
mation, Cambridge Univ. Press 2000.

[7] C. Toffalori, F. Corradini, S. Leonesi, S. Mancini, Teoria della com-
putabilità e della complessità, Mc-Graw-Hill, 2005.

[8] D. Aharonov, V. Jones, Z. Landau, A Polynomial Quantum Algorithm
for Approximating the Jones Polynomial, in the Proceedings of the 38th
annual ACM Symposium of Theory of Computing, ACM New York
2006.

[9] C. Kassel, V. Turaev, Braid Groups, Springer 2008.

[10] D. Bisch, V. Jones, Algebras associated to intermediate subfactors, In-
ventiones Mathematicae, Springer-Verlag, 1997.

[11] V.V. Prasolov, A.B. Sossinsky, Knots, Links, Braids and 3-Manifolds,
American mathematical Society, 2000.

73

[12] D. Aharonov, I. Arad, On the BQP-hardness of Approximating the Jones
Polynomial, preprint, 2006.

[13] I.N. Herstein, Topics in algebra, Xerox College Publishing, 1975.

[14] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers,
Oxford University Press, 1975.

[15] A. Stoimenow, On the coefficients of the link polynomials, Springer-
Verlag, 2003.

74

