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Introduction

The date of birth of braids theory is commonly set in 1925, when Emil
Artin in his work [Ar25] provided a geometrical definition and a presen-
tation for the n-braid group Bn, but the notion of braid was already well
known.
The first sketch of a braid can be found in Gauss’ notebooks dating back
to the first half of the XIX century. Moreover, Gauss was the first to pose
the problem of classifying braids up to a suitable equivalence relation.
Later, some other authors including Hurwitz, introduced implicitely in
their works the concept of braid groups without providing a formal defi-
nition of the structure until Artin did it.
The emphasis of Artin work lies in translating geometrical issues into
group-theoretical ones, indeed for example the classification of braids up
to isotopy is seen as the word problem for the braid group.

In [Ar], Artin showed also the relation between the braid group Bn and
the configuration space of n points on the plane R2. Indeed, consider the
loops based at a point ω in the configuration space Cn(R2), consisting of
n points whose second coordinate is zero, ω = {(1, 0), (2, 0), . . . , (n, 0)}.
Then, suppose that at some moment t, a loop passes through an element
x(t) ∈ Cn(R2) and notice that x(t) is a plane with n distinct points marked
on it. If we place the plane x(t) in R3 by adding the third coordinate z = t
and if we let t vary in [0, 1], then we obtain an n-braid. Hence, there is a
bijective correspondence between the homotopy classes of loops based at
ω and the isotopy classes of n-braids, that is Bn = π1(Cn(R2)).

Many applications of braids theory have been found out during the last
century, but we are going to focus on an unexpected one in robotics.
In the 1990′s, some mathematicians approached to safe control schemes
for automated guided vehicles (AGVs). The problem was designin a con-
trol scheme which avoids collissions with obstacles or other AGVs and,
at the same time, guarantees a high enough efficiency in completing the
assigned task.
The workspace floor of the factory with n AGVs moving, can be thought
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of as the configuration space Cn(R2), but in order to reduce the sophis-
tication required for the AGVs, they can be imagined to move only on
guidepath wires. For this reason, the problem was moved to configura-
tion spaces on graphs and consequently to the braid groups on graphs.

In the last two decades, different methods have been proposed in order to
provide increasingly easier and efficient computing of presentations for
braid groups on graphs.
The pioneering works by Ghrist and Abrams [Gh99], [Ab], [AG], [Gh07]
have become the basis of further results. The so called Subdivision The-
orem, proved by Abrams in [Ab], was used by Farley and Sabalka in
[FS05], [FS09] together with the discrete Morse theory to give a descrip-
tion of the critical cells of a "discretization" of the configuration space
Cn(G) of a graph G admitting a cubical complex structure. In particular,
this discretized configuration space requires a subdivision of the graph
G depending on the number n of points on it. Then, Farley and Sa-
balka were able to compute a presentation for the braid group Bn(G) of
G where the generators are the critical 1-cells and the relations are given
by the critical 2-cells.

The purpose of this thesis is to study the configuration spaces of graphs
and to compute presentations for the corresponding braid groups, adopt-
ing a simpler approach that avoids the need for the subdivision theorem
and the Morse theory. Our starting idea was to explicitely construct a
kind of normalized configuration subspace Nn(G) which is a weak defor-
mation of Cn(G), and a homeomorphism between Nn(G) and a cubical
complex Qn(G) without requiring any subdivision of G. Then, a presen-
tation for Bn(G) can be directly derived from the 2-skeleton of Qn(G),
without using Morse theory.
At a later stage we found out that in [Sw], Swiatkowski had already fol-
lowed a similar argument which was not cited in the later works by Ghrist
and Abrams [AG], [Gh07]. Indeed, he defined an embedding i of a cubi-
cal complex Kn(G) into the configuration space Cn(G) and then he stated
that there is a certain strong deformation retraction r : Cn(G)→ i(Kn(G)).
All the proofs are left to the reader and we have verified that r is not even
a retraction.

Chapter 1 reviews the basic notions and results regarding graphs, CW-
complexs, fundamental groups and group presentations, which will be
needed for later chapters. The last two sections briefly introduce classical
and discrete Morse theory, stating the main theorems of both theories.

In chapter 2, first we define configuration spaces and braid groups on
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metric spaces, then the last section is focused on describing in some de-
tail the results achieved by Ghrist, Abrams, Farley and Sabalka regarding
the presentations for braid groups on graphs.

Chapter 3 is subdivided in three sections as follows. First we define the
normalized configuration space Nn(G), consisting of all the configura-
tions x ∈ Cn(G) whose first and last points along each edge e of G vary
inside two proper intervals, while the intermediate points are uniformly
distributed between them.
Then, we construct a continuous mapping Φ : Cn(G) → Cn(G) such that
Im Φ = Nn(G) and we prove that Φ gives a weak deformation of the con-
figuration space Cn(G) into the normalized configuration space Nn(G).
Finally, we construct a cubical complex Qn(G) homeomorphic to Nn(G),
and provide a presentation for the braid group Bn(G) as the fundamental
group of Qn(G).

In chapter 4, we analyze in detail some families of graphs and we com-
pute a presentation for their braid groups, based on the results seen in
chapter 3. In particular, we find general formulas for the radial trees and
the bouquets of loops, which agree with the already known results seen
in chapter 2.
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Chapter 1

Preliminaries

In this preliminary chapter we introduce notions and tools necessary
to understand later results. In particular, we need to deal with cell com-
plexes, cubical and simplicial complexes, graphs, discrete Morse theory
and some other topics from algebraic topology.

Let Rn = {(x1, . . . , xn) : xi ∈ R ∀ i = 1, . . . , n} be the n-dimensional
Euclidean space provided with the usual metric d(x, y) =

∥∥x− y
∥∥ and the

topology induced by this metric.
We adopt the following notations:
Bn = {x ∈ Rn : ‖x‖ ≤ 1} for the closed unit n-ball in Rn;
Sn = {x ∈ Rn+1 :‖x‖ = 1} for the unit n-sphere in Rn+1;
Int Bn = Bn \ Sn−1 for the interior of Bn;
Bd Bn = Sn−1 for the boundary of Bn.

1.1 Graphs

Definition 1.1.1. A finite graph G = (VG, EG, FG) consists of a set VG of
vertices, a set EG of edges and a map FG : EG → (VG ×VG)/Σ2 which asso-
ciates to each edge e ∈ EG an unordered pair of non-necessarily distinct
vertices in VG, called the endpoints of e.
When the endpoints of an edge e ∈ EG coincide, the edge e is said a loop.

The degree or valence of a vertex v, denoted by deg(v), is the number
of occurencies of v in the pairs of endpoints of all the edges. A vertex of
degree 0 is an isolated vertex, a vertex of degree 1 is a terminal vertex and
a vertex of degree = 2 is an inessential vertex.

A planar graph is a graph which can be embedded into R2.

A subgraph of a graph G = (VG, EG, FG) is a graph H = (VH, EH, FH)
such that VH ⊂ VG, EH ⊂ EG and FH = FG|EH

.

1



2 Chapter 1

A path in a graph G is a sequence of edges P = e1, e2, . . . , em
for which there exists a sequence of vertices v0, . . . , vm of G so that
FG(ej) = [vj−1, vj]. A graph G is connected if for each pair of vertices
v, w ∈ VG there exists a path as above such that v0 = v and vm = w.
A path P is closed if vm = v0. A cycle is a closed path such that no vertex
appears more than once except for vm = v0.

A tree is a simply connected graph [Sp], or equivalently a graph
without any cycle. A tree is linear if every vertex of degree strictly greater
than 2 lies along a single embedded arc.

A spanning tree of a graph G is a subgraph H of G which is a tree and
such that VH = VG.

Proposition 1.1.2. Every connected graph G has a spanning tree.

Proof. We argue by induction on the number n ≥ 0 of edges of G. If n = 0,
then G consists of one vertex and so it is already a spanning tree of itself.
If n > 0, then either G is a tree, and so it is a spanning tree of itself, or
G contains a cycle. In the latter case, we can eliminate one edge of the
cycle and the resulting subgraph is still connected and it has n− 1 edges.
Hence, it has a spanning tree which is also a spanning tree for G.

A topological graph G is a topological space which comes from a graph
G = (VG, EG, FG) by replacing each vertex vi with a point xi and each
edge e with a copy Ie of the unitary interval [0, 1] such that the endpoints
of Ie are identified with xi and xj if FG(e) = [vi, vj]. The topology of G is
the quotient topology of the disjoint union {xi}i

⊔
FG(e) Ie.

Remark 1.1.3. Let G be a connected finite topological graph not homeo-
morphic to S1 and G′ be the topological graph obtained from G by elim-
inating all the inessential vertices and fusing every pair of edges sharing
the same inessential vertex into a single edge. Then, G ∼= G′.
Observe that if G ∼= S1, then all the vertices of G are inessential so if we
remove all of them we do not have even a graph anymore.

Given a connected topological graph G, it is possible to think of it as
a linear graph in Rn with n = |VG| as follows.
Assume VG = {v1, . . . , vn} and consider the canonical basis (e1, . . . , en) of
Rn. We put each vertex vi of G on the head of a vector ei√

2
for i = 1, . . . , n
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and we let the edges of G be segments joining two vertices vi, vj. In this
way each edge e ∈ EG has unitary length. Then, we define the metric dG
on G by setting for every p, q ∈ G

dG(p, q) := min
A∈Apq

L(A),

where Apq is the collection of all poligonal arcs in G between p and q and
L denotes the Euclidean length.
Notice that dG is independent on the specific indexing of VG.

1.2 Complexes

A closed n-cell (c, hc) consists of a topological space c and a homeomor-
phism hc : Bn → c. We indicate by Int c the interior of c, that is the image
hc(Int Bn) of the interior of Bn and by Bd c the boundary of c, that is the
image hc(Bd Bn) of the boundary of Bn.
An open n-cell (c, hc) consists of a topological space c and a homeomor-
phism hc : Int Bn → c. Notice that the interior of a closed n-cell is an open
n-cell such that hc = hc| Int Bn .

A finite CW-complex K is a topological space together with a partition
of it into disjoint open cells such that:

i) K is Hausdorff;

ii) for each open n-cell (c, hc) ⊂ K, there exists a characteristic map

ec : Bn → K

such that ec| Int Bn = hc and ec(Bd Bn) is contained into a finite union
of open cells of dimension less than n;

iii) a set A is closed in K if and only if A ∩ c is closed in c for any open
n-cell (c, hc).

The finiteness condition in ii) is called "closure finiteness" and con-
dition iii) determines the so called "weak topology" with respect to the
collection of the closed cells (c, hc). These two expressions are at the ori-
gin of the term "CW-complex".

The dimension dim K of a CW-complex K is the maximum of the dimen-
sions of its cells.
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A subspace L is a subcomplex of K if it is a union of cells of K which is still
a CW-complex.
In particular, for every i ≤ dim K, the subspace Ki is constituted by the
union of all the cells of K of dimension at most i and it is a subcomplex
of K called the i-skeleton of K.

Given a topological space X and a continuous function f : Bd Bn → X,
the notion of attaching an n-cell to X consists of the topological union X t
Bn quotiented out by the minimal equivalence relation which identifies
each point x ∈ Bd Bn with f (x) ∈ X. The resulting space is denoted by
X ∪ f Bn.
A finite CW-complex K can be realized by inductively constructing its
skeleta. Namely, the n-skeleton Kn can be obtained by attaching each
n-cell (c, hc) of K to Kn−1 via the attaching map fc = ec|Bd Bn : Bd Bn →
Kn−1.

Let K be a finite CW-complex of dimension n, we define the Euler
characteristic of K, denoted by χ(K), as

χ(K) =
n

∑
i=0

(−1)ini

where ni indicates the number of i-cells of K.

Consider a unit interval I in R and the standard cube In in Rn.
An n-cube (c, hc) consists of a topological space c equipped with a home-
omorphism hc : In → c.
An (n− 1)-face r of In can be identified by two parameters k and i, where
k = 1, . . . , n indicates the direction and i = 0, 1, such that

rk,0 = {t ∈ In|tk = 0}

and
rk,1 = {t ∈ In|tk = 1}.

We define a natural parametrization of the face rk,i as follows:

pk,i : In−1 → rk,i s.t. (t1, . . . , tn−1) 7→ (t1, . . . , tk−1, i, tk+1, . . . , tn−1).

An (n − 1)-face (d, hd) of (c, hc) consists of the topological space d =
hc(rk,i) equipped with a homeomorphism hd : In−1 → d such that hd =
hc ◦ pk,i.
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Definition 1.2.1. Let (c, hc) be an n-cell in K and (d, hd) an (n − 1)-face
of (c, hc) whose characteristic maps are ec : In → K and ed : In−1 → K
respectively.
A finite cubical complex Q is a finite CW-complex such that each n-cell
(c, hc) of Q is an n-cube and each (n− 1)-face (d, hd) of (c, hc) is an (n−
1)-cell of Q with characteristic map ed = ec|rk,i

, up to Euclidean isometries
of In−1.

The standard n-simplex ∆n is a subset of Rn+1 such that

∆n =
{
(t0, t1, . . . , tn) ∈ Rn+1 :

n

∑
i=0

ti = 1, ti ≥ 0 ∀i = 0, . . . , n
}

.

Consider an (n− 1)-face r of ∆n, then it can be identified by a single pa-
rameter k indicating the direction, k = 0, . . . , n such that rk = {t ∈ ∆n−1 :
tk = 0}. An n-simplex (σ, hσ) is a topological space σ equipped with a
homeomorphism hσ : ∆n → σ.
An (n − 1)-face (ρ, hρ) of (σ, hσ) is the topological space ρ = hσ(rk)

equipped with a homeomorphism hρ : ∆n−1 → ρ. It can be given a defini-
tion of simplicial complexes analogous to that of cubical complex.

Definition 1.2.2. A finite simplicial complex K is a CW-complex such that
each n-cell (σ, hσ) of K is an n-simplex and each (n − 1)-face (ρ, hρ) of
(σ, hσ) is an (n − 1)-cell of K with characteristic map eρ = eσ|rk

, up to
isometries of ∆n−1.

Now consider Rn, and let {v1, . . . , vm} be a set of m affinely indepen-
dent points with m ≤ n. An m-simplex σ in Rn spanned by v1, . . . , vm is a
subset of Rn such that

σ =
{

x ∈ Rm : x =
m

∑
i=1

tivi where
m

∑
i=1

ti = 1, ti ≥ 0 for all i
}

.

A 0-simplex in Rn is just a point v1. A 1-simplex spanned by v1, v2 is the
line segment joining v1 and v2. A 2-simplex spanned by v1, v2, v3 is the
triangle with vertices v1, v2, v3 and so on.

Any non-empty subset of {v1, v2, . . . , vm} of cardinality p ≤ m spans a
p-simplex ρ called a p-face of σ. We denote this by ρ ≤ σ.
A simplex τ is a coface of a simplex σ if σ is a face of τ.
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Definition 1.2.3. A finite simplicial complex K in Rn is a subspace given by
the union of a finite collection of simplices in Rn such that

i) if ρ ≤ σ and σ ∈ K then also ρ ∈ K, i.e. every face ρ of a simplex σ
in K is a simplex in K itself;

ii) if σ, τ ∈ K then σ ∩ τ is empty or a face of both σ and τ, and so it is
itself a simplex in K.

Remark 1.2.4. Observe that according to Def. 1.2.3, a simplical complex in
Rn is univocally determined by its vertices, while in Def. 1.2.2 there was
the possibility to have distinct simplices sharing the same vertices, indeed
the characteristic maps were not necessarily injective on the boundary.
This means that the two definitions are not equivalent, but a simplicial
complex in Rn is a particular case of a simplicial complex seen as a CW-
complex.

A definition equivalent to Def.1.2.3 is that of abstract simplicial com-
plex.
An abstract finite simplicial complex S is a collection of finite non-empty
sets such that if A is in S , then also every non-empty subset of A is in S .
An element A in S is said an abstract simplex of S . The dimension of A in
S is the cardinality of A minus 1.
The 0-simplices in S are the vertices of S . Each simplex of S that is a sub-
set of A ∈ S is called a face of A.

Let K be a finite simplicial complex in Rn and S be the collection of finite
sets of vertices {v1, . . . , vk} which are vertices of some simplex of K. Then,
S is an abstract simplicial complex and it is called the vertex scheme of K.
Equivalently K is said the geometric realization of S . [Le]

1.3 Homotopy and fundamental group

Let X, Y be two topological spaces. A homotopy of X into Y is a continuous
map

H : X× [0, 1]→ Y.

Equivalently, H can be seen as a continuous family of continuous func-
tions (ht : X → Y)t∈[0,1] such that ht(x) = H(x, t) for each x ∈ X and for
each t ∈ [0, 1].
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Given two continuous functions f , f ′ : X → Y, then H is a homotopy
between f and f ′ if h0 = f and h1 = f ′.
If there exists a homotopy between f and f ′, then the functions f and f ′

are said homotopic and we write f ' f ′.
It can be easily verified that homotopy relation ' is a compositive equiv-
alence relation.

Two topological spaces X and Y are said homotopy equivalent if there
exist two continuous functions f : X → Y and g : Y → X such that g ◦ f '
idX and f ◦ g ' idY.

If X is homotopy equivalent to a single point, then X is said contractible.

Definition 1.3.1. A weak deformation of a topological space X into a sub-
space A of X is a homotopy

H : X× [0, 1]→ X

such that the following are satisfied:

i) H(x, 0) = x for all x ∈ X,

ii) H(x, 1) ∈ A for all x ∈ X,

iii) H(x, t) ∈ A for all x ∈ A and for all t ∈ [0, 1].

Then A itself is said a weak deformation of X.

A strong deformation of X onto A is a weak deformation which satisfies
also

H(x, t) = x for all x ∈ A and for all t ∈ [0, 1].

Then A itself is said a strong deformation of X.

Equivalently, we can say that A is a weak deformation of X if there
exists a continuous map r : X → A such that r ◦ i ' idA and i ◦ r ' idX
where i : A → X is the inclusion map. Hence, A and X are homotopy
equivalent.

Let X be a topological space, ∗ a point in X and Ω(X, ∗) the set of loops
in X based at point ∗ :

Ω(X, ∗) =
{

ω : [0, 1]→ X s.t. ω continuous and ω(0) = ω(1) = ∗
}

.

Then, the set Ω(X, ∗) equipped with the concatenation of loops and quo-
tiented out by homotopy relation mod {0, 1} forms a group called the
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fundamental group of (X, ∗), which is an homotopy invariant. We denote
it by

π1(X, ∗) = (Ω(X, ∗), ·)/ '{0,1} .

Notice that if X is a path connected topological space and ∗, ∗′ are two
points in X, then there is a path between ∗ and ∗′ and it can be induced
an isomorphism between π1(X, ∗) and π1(X, ∗′). Thus, the fundamental
group π1(X, ∗) is independent on the choice of the base point ∗. For this
reason, from now on we are going to use the notation π1(X) instead of
π1(X, ∗) while considering path connected topological spaces.

The first homology group H1(X) is the abelianization of the fundamen-
tal group π1(X) and the Euler characteristic of X is related to the homol-
ogy groups as follows

χ(X) = ∑
n
(−1)n rank Hn(X).

Let us remind an essential result for computing fundamental groups
of path connected topological spaces.

Theorem 1.3.2. (Seifert-Van Kampen Theorem) [Mu] Let X be the union
of two open, path connected subsets X1 and X2 whose intersection X1 ∩ X2 is
non-empty and path connected. Let x0 be a point in X1 ∩ X2 and let

j1 : X1 ∩ X2 → X1 and j2 : X1 ∩ X2 → X2

be the embeddings into X1 and X2 respectively.
Then,

π1(X) ∼=
π1(X1) ∗ π1(X2)

N({j1(ω)j2(ω)−1, ω ∈ π1(X1 ∩ X2)})
.

Proposition 1.3.3. A CW-complex X is connected if and only if its 1-skeleton
X1 is connected.

Proof. First observe that attaching an m-cell (c, hc) with m > 1 to any
space X does not change the number of components of the space. In-
deed, considering the characteristic map ec : Bm → X, we can notice that
ec|Bd Bm is continuous and its image must be entirely contained in a single
connected component of X since Bd Bm is connected.
Then, the proposition immediately follows by induction on the number
n ≥ 0 of the cells of X whose dimension is greater than 1.
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Lemma 1.3.4. Let X be a path connected space and X′ = X ∪ fc c, with (c, hc)
an i-cell with i ≥ 3. Then, π1(X) ∼= π1(X′).

Proof. First notice that X′ is connected by the previous proposition.
Let us consider the characteristic map ec : Bi → c and a loop

ω : [0, 1]→ X′ such that [ω] ∈ π1(X′).

We call A1 = Int c and A2 = X′− {p} where p = ec(0), then we can write
X′ = A1 ∪ A2.
Observe that A1 is path connected since it is the interior of a cell of di-
mension i ≥ 3, while c− {0} strongly deforms to Bd c.
Hence, by applying the characteristic map ec we have that

X′ − {p} = X ∪ fc (c− {0})

deforms to
X ∪ fc Bd c = X.

So, A2 is path connected since so is Si−1, being i− 1 ≥ 2.
Moreover, A1 ∩ A2 is homeomorphic to Int Bi − {0} ' Si−1, and hence
A1 ∩ A2 is path connected for i ≥ 2.

Then, π1(A1) ∼= ∗, π1(A2) ∼= π1(X) and π1(A1 ∩ A2) ∼= π1(Si−1) ∼= 0.
Thus, we can apply Seifert Van Kampen theorem to get

π1(X′) ∼=
π1(A1) ∗ π1(A2)

N({j1(ω), j−1
2 (ω), ω ∈ π1(A1 ∩ A2)})

∼=

∼=
0 ∗ π1(X)

0
= π1(X).

This lemma guarantees that while attaching cells of dimension greater
than or equal to 3 the fundamental group is left unchanged.

Proposition 1.3.5. Let X be a connected CW-complex of dimension k. Then the
inclusion Xi−1 ⊂ Xi induces an isomorphism π1(Xi−1) → π1(Xi) for i ≥ 3.
Hence, we have

π1(X) ∼= π1(X2).

Proof. By Lemma 1.3.4, we know that the fundamental group of a path
connected space X is unaffected by attaching an i-cell of dimension i ≥ 3.
Hence, by induction on the number of cells of X of dimension i ≥ 3, the
proposition follows directly.
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1.4 Presentations of groups

A presentation of a group G consists of a set S of generators and a set R
of relations such that any relation ρ ∈ R is an element of the free group
F(S) and G is isomorphic to the quotient group F(S)/N(R), where N(R)
is the normal subgroup generated by R. We denote a presentation of G by

G = 〈S|R〉 ∼=
F(S)
N(R)

.

Determining whether two group presentations define isomorphic groups
is undecidable.
However, given a presentation G = 〈β1, . . . , βn|ρ1, . . . , ρk〉 for G, it is pos-
sible to obtain other presentations for G by applying the following oper-
ations called Tietze transformations.

i) Adding a generator: if α can be written in terms of β1, . . . , βn as
α = W(β1, . . . , βn), then we can insert α as an additional genera-
tor together with the relation α−1W(β1, . . . , βn) and then we have
the following new presentation for G

G = 〈β1, . . . , βn, α|ρ1, . . . , ρk, α−1W(β1, . . . , βn)〉.

ii) Removing a generator: if βi can be written in terms of the other gen-
erators β1, . . . , βi−1, βi+1, . . . βn as

βi = W(β1, . . . , βi−1, βi+1, . . . βn),

then we can delete βi and replace it by W(β1, . . . , βi−1, βi+1, . . . βn)
in the relations containing βi.

iii) Adding a relation: if σ is a relation which can be derived from
ρ1, . . . , ρk then we can insert σ and we have the following new pre-
sentation for G

G = 〈β1, . . . , βn|ρ1, . . . , ρk, σ〉.

iv) Removing a relation: if ρi is a consequence of ρ1, . . . , ρi−1, ρi+1, . . . , ρk
then we can delete ρi,

G = 〈β1, . . . , βn|ρ1, . . . , ρi−1, ρi+1, . . . , ρk〉.

It is possible to derive an alternative formulation of Seifert-Van Kam-
pen Theorem in terms of group presentations.



1.4. PRESENTATIONS OF GROUPS 11

Theorem 1.4.1. (See [CF], Theorem 3.6)
Let π1(X1, x0) ∼= 〈αi|λj〉, π1(X2, x0) ∼= 〈βi|µj〉 and π1(X1 ∩ X2) ∼= 〈γi|νj〉.
Then

π1(X1 ∪ X2) ∼= 〈αi, βi|λj, µj, j1(γi)j2(γi)
−1〉.

Consider a connected graph G, a maximal spanning tree T and a ver-
tex v of T. Let e1, . . . , en be the edges of G not contained in T such that
FG(ei) = [vi, wi]. We consider the paths gi from v to vi and hi from wi to v
inside the tree T. Then we can take the classes [ fi] of loops fi = gieihi.

Proposition 1.4.2. The fundamental group π1(G) is the free group on the
classes [ f1], . . . , [ fn].

Proof. It can be proved by induction on the number n of edges of G not
contained in T.
For n = 0, G is a tree and hence π1(G) ∼= 0.
We assume that the thesis holds for n− 1 and we prove it for n edges out
of T.
For each i = 1, . . . , n we choose a point xi ∈ ei and we consider

A1 = G− {x1, . . . , xn−1} and A2 = G− {xn}.

Then, A1 and A2 are open, A1 ∩ A2 ' T, A1 ' T ∪ en and A2 ' G − en.
By inductive hypothesis, π1(A2) is the free group on [ f1], . . . , [ fn−1].
Moreover, π1(A1) is the free group on [ fn] and π1(A1 ∩ A2) ∼= π1(T) ∼= 0.
Hence, by applying Seifert Van Kampen theorem, we get that π1(G) is
the free group on [ f1], . . . , [ fn].

Proposition 1.4.3. Suppose that Γ is a graph with a single vertex of degree
greater than 2, then the fundamental group π1(Γ) is the free group on 1− χ(Γ)
generators.

Proof. First, notice that Prop. 1.4.2 means that a connected graph G is
homotopy equivalent to a wedge of finitely many copies of S1. Hence, in
this case Γ is homotopy equivalent to a bouquet of loops. If we compute
the Euler characteristic we get χ(Γ) = 1− n where n indicates the number
of loops constituting the bouquet. So, π1(Γ) is a free group on n =
1− χ(Γ) generators.

By Prop. 1.3.5, remind that a group presentation for π1(X2) is also a
group presentation for π1(X).
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Lemma 1.4.4. Let X be a path connected topological space and let us attach a
2-cell (c, hc) to X via the attaching map fc : Bd c→ X.
Suppose α is a generator for π1(Bd c), if π1(X) = 〈β1, . . . , βn|ρ1, . . . , ρn〉 then,

π1(X ∪ fc c) = 〈β1, . . . , βn|ρ1, . . . , ρn, σ〉

where σ is an expression for fc∗(α) ∈ π1(X) written in terms of β1, . . . , βn.

Proof. Notice that π1(c) ∼= 0 and that by hypothesis, π1(X∩ c) ∼= π1(Bd c).
Hence, by applying Seifert-Van Kampen theorem in terms of group
presentations, we have that a presentation for π1(X ∪ fc c) is exactly
〈β1, . . . , βn|ρ1, . . . , ρn, σ〉 where σ = j1(α)j2(α)−1.

Proposition 1.4.5. Let X be a connected CW complex, β1, . . . , βn the generators
for the free group π1(X1) as given in Prop. 1.4.2 and (c1, hc1), . . . , (ck, hck) the
2-cells of X. For each i = 1, . . . , k, let αi be any generator for π1(Bd ci) ∼= Z

and σi be the expression of αi in terms of β1, . . . , βn. Then,

π1(X) = 〈β1, . . . , βn|σ1, . . . , σk〉.

Proof. Since X1 is a graph, then by Prop. 1.4.2, the generators β1, . . . , βn
are given by the edges out of a maximal spanning tree T of X1.
Remind that X2 is obtained by attaching to X1 all the 2-cells of X and also
π1(X2) ∼= π1(X) by Prop. 1.3.5.
Then, we prove the statement by induction on the number k of 2-cells of
X. For k = 0, we have just π1(X1) = 〈β1, . . . , βn〉. We assume that the
thesis holds for k− 1 and we verify it for k.
Let X1

k indicate the set resulting from attaching k 2-cells to X1, then

π1(X1
k) = π1(X1

k−1 ∪ fck
ck),

and by inductive hypothesis π1(X1
k−1) = 〈β1, . . . , βn|σ1, . . . , σk−1〉 where

σ1, . . . , σk are expressions for α1, . . . , αk−1 in terms of β1, . . . , βn. Then, by
applying again Lemma 1.4.4 the thesis follows.

In summary, the generators of π1(X2) are the edges outside of a maxi-
mal spanning tree T of X1 and the relations of π1(X2) come from looking
at the boundaries of the 2-cells of X2 and writing them as words in terms
of the generators.
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1.5 Classical Morse theory

Classical Morse theory was developed in the 1920s and 1930s by the
American mathematician Marston Morse [Mo] with the aim of deducing
topological information about a differentiable manifold M by the study
of a smooth real-valued function f : M→ R defined on M.

The basic idea consists in considering a differentiable manifold
M ⊂ Rn and a collection of parallel hyperplanes and slicing M with
these hyperplanes in order to extrapolate information by the variation of
the shape of each single slice of M.

For example, let M be a torus and f : M → R be the height function
which associates to each point of M the corresponding height with respect
to a plane V tangent to M. We denote by Ma the set of points x of M such
that f (x) ≤ a. We consider the points p, q, r, s in M as in Figure 1.5.1, then
the following hold true:

1) if a ≤ f (p), then Ma = ∅;

2) if f (p) < a < f (q), then Ma is homeomorphic to a 2-cell;

3) if f (q) < a < f (r), then Ma is homeomorphic to a cylinder;

4) if f (r) < a < f (s), then Ma is homeomorphic to a compact manifold
of genus 1 having a circle as boundary;

5) if f (s) < a, then Ma is the full torus.

In general, given a smooth manifold M and a smooth function
f : M → R, a point x in M is called a critical point of f if the induced
map f∗ : Tx M→ Tf (x)R is zero.

A critical point x is called non-degenerate if the Hessian matrix ( ∂2 f
∂xi∂xj

(x))
with respect to some local coordinates x1, . . . , xn is non-singular.

The function f is a Morse function if all its critical points are non-
degenerate.

Lemma 1.5.1. ([Mi], Lemma 2.2) Given a smooth function g : M → R and
an ε > 0, there always exists a Morse function f : M → R such that∣∣g(x)− f (x)

∣∣ < ε for all x ∈ M.
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Figure 1.5.1: Torus M tangent to a plane V at the point p.
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The index λ of a point p with respect to a smooth function f is the
maximum dimension of a subspace of TpM such that the Hessian of f is
negative definite.

Two main results in classical Morse theory are the following:

Theorem 1.5.2. ( [Mi], Theorem 3.1) Let f : M→ R be a smooth function and
a < b ∈ R. If there are no critical points in f−1([a, b]), then Ma is diffeomorphic
to Mb. Moreover, there exists a strong deformation of Mb onto Ma, and hence
the inclusion map i : Ma → Mb is a homotopy equivalence.

Theorem 1.5.3. ( [Mi], Theorem 3.2 ) Let f : M → R be a smooth function
and p a non-degenerate critical point of f of index λ. Suppose f (p) = c, if p
is the only critical point contained in f−1(c − ε, c + ε) for some ε, then, for ε
sufficiently small, Mc+ε is homotopy equivalent to Mc−ε with a λ-cell attached.

Observe that the points p, q, r, s in Figure 1.5.1 are non-degenerate crit-
ical points of f and the topology of Ma changes from one case to the
following one by attaching a cell to Ma as soon as we cross a critical non-
degenerate point.
In particular we can pass from 1) to 2) by attaching a 0-cell, from 2) to 3)
and also from 3) to 4) by attaching a 1-cell, and finally from 4) to 5) by
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attaching a 2-cell.
In this sense, classical Morse theory is able to extract topological issues
about M from the study of a Morse function.

In general, as a consequence of the two theorems above, we have the
following.

Theorem 1.5.4. ([Mi], Theorem 3.5) Let f be a smooth function on M with no
degenerate critical points, if each Ma is compact, then M is homotopic equivalent
to a CW-complex with one cell of dimension λ for each critical points of index λ.

1.6 Discrete Morse theory

In 1995 another American mathematician, Robin Forman, published his
first paper [Fo95] about a new adaptation of classical Morse theory he
called discrete Morse theory.

The main difference from the original theory consists in considering
CW complexes instead of manifolds and replacing smooth functions by
discrete ones. The convenience in substituting the main object is reducing
its complexity and at the same time not losing important information.

For the sake of simplicity, we focus on discrete Morse theory based on
simplicial complexes, but all the following definitions can be adapted to
the more general case of CW complexes.

Definition 1.6.1. Let K be a simplicial complex, a function f : K → R is
a discrete Morse function if, for every n-simplex σ ∈ K, the following are
satisfied:

i) Uσ = #{τ > σ | f (σ) ≥ f (τ), where τ is an (n + 1)-simplex } ≤ 1;

ii) Lσ = #{ρ < σ | f (ρ) ≥ f (σ), where ρ is an (n− 1)-simplex } ≤ 1.

Condition i) states that for each n-simplex σ in K, for all the simplices
τ such that dim σ = dim τ − 1, function f can associate to τ a real value
smaller or equal to f (σ) at most in one single case.
Similarly, condition ii) states that for each n-simplex σ in K and for all
the simplices ρ such that dim ρ = dim σ− 1, function f can associate to ρ
a real value greater or equal to f (σ) at most in one single case .
It means that every time we are considering two simplices with those
characteristics, a discrete Morse function f associates a greater value to
the simplex with greater dimension a part from at most one exception.
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Figure 1.6.2
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Example 1.6.2. In Figure 1.6.2 we have applied to the same 1-simplicial
complex K, a function f : K → R on the left and a function f ′ : K → R on
the right.

We can say that f is not a discrete Morse function because the edge
f−1(0) violates condition ii) and the vertex f−1(3) violates condition i) in
Def. 1.6.1.
On the other hand, f ′ is a Morse function since the edge f ′−1(3) has
greater value than both its vertices and the edges f ′−1(1) have both one
vertex with bigger value and one with smaller value, so both conditions
i) and ii) in Def. 1.6.1 are satisfied.

For any simplicial complex K with a discrete Morse function f and
c ∈ R, we define the level subcomplex by

K(c) = ∪ f (τ)≤c ∪σ<τ σ

where σ, τ are simplices of K.

Definition 1.6.3. Given a simplicial complex K and a discrete Morse func-
tion f : K → R, an n-simplex σ in K is

i) critical if Lσ = Uσ = 0;

ii) redundant if Lσ = 0 and Uσ = 1;

iii) collapsible if Lσ = 1 and Uσ = 0.
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Observe that Def. 1.6.3 means that a simplex σ is critical if the cor-
responding discrete Morse function f associates greater values to each
simplex τ with higher dimension than σ and at the same time, associates
smaller values to each simplex ρ with smaller dimension than σ.

Consider again the discrete Morse function f ′ in Figure1.6.2 on the
right, we can observe now that the vertex f ′−1(0) is a critical 0-simplex
and edge f ′−1(3) is a critical 1-simplex.

Let Ki be the set containing all the i-simplices, a discrete vector field is a
map W : K → K ∪ {0} such that

i) for each i, W(Ki) ⊆ Ki+1 ∪ {0},

ii) for each i-simplex σ ∈ Ki, either W(σ) = 0 or σ is a regular face of
W(σ),

iii) if σ ∈ Im W, then W(σ) = 0,

iv) for each i-simplex σ ∈ Ki, then #{ρ ∈ Ki−1 : W(ρ) = σ} ≤ 1.

The following Theorems correspond respectively to Theorems 1.5.2, 1.5.3,
1.5.4 in classical Morse theory.

Theorem 1.6.4. ([Fo], Theorem 3.3) If there are no critical simplices σ with
f (σ) ∈ (a, b], then the level subcomplex K(a) is a strong deformation of K(b).

Theorem 1.6.5. ([Fo], Theorem 3.4) If σ is the only critical n-simplex such that
f (σ) = c and σ ∈ f−1(c− ε, c + ε) for some ε > 0, then for all ε sufficiently
small, K(c + ε) is homotopy equivalent to K(c− ε) with an n-cell attached.

From the previous two lemmas next theorem follows easily:

Theorem 1.6.6. ([Fo], Corollary 3.5) Let K be a simplicial complex with a dis-
crete Morse function f : K → R. Then, K is homotopy equivalent to a CW-
complex with exactly one cell of dimension p for each critical simplex σ ∈ K of
dimension p.
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Chapter 2

Braid groups and their presentations

In this chapter we first introduce classical definitions of configura-
tion spaces and braids and discuss how these two concepts are related
and then, in the last section, we show some recent results concerning the
problem of computing presentations for braid groups on graphs. Almost
all of these statements will be proved again in the next chapter following
a different approach.

2.1 Configuration spaces and braids

Let us give the definition of configuration space on a metric space as
follows.

Definition 2.1.1. Let (X, d) be a metric space. The labeled configuration
space of n points in X is

C̃n(X) := {(x1, x2, . . . , xn) ∈ Xn | xi 6= xj for i 6= j}.

The configuration space Cn(X) of n points in X is the quotient of C̃n(X) by
the natural action of the symmetric group

Cn(X) := C̃n(X)/Σn.

Given two configurations x = {x0, . . . , xn} and y = {y0, . . . , yn} in Cn(X),
the distance between x and y is defined as

dCn(X)(x, y) = min
σ∈Σn

max
i=1,...,n

d(xi, yσ(i)).

Let us prove that dCn(X) is a metric on Cn(X) :

i) dCn(X)(x, y) ≥ 0 ∀x, y ∈ Cn(X) by non-negativity of the metric d.

19
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ii) dCn(X)(x, y) = 0 if and only if minσ∈Σn maxi d(xi, yσ(i)) = 0
if and only if there exists a permutation σ ∈ Σn such that
maxi d(xi, yσ(i)) = 0 if and only if xi = yσ(i) for all i if and only
if x = y.

iii)

dCn(X)(x, y) = min
σ∈Σn

max
i

d(xi, yσ(i)) = min
σ∈Σn

max
i

d(xσ−1(i), yσ(σ−1(i))) =

min
σ∈Σn

max
i

d(xσ−1(i), yi) = min
σ∈Σn

max
i

d(yi, xσ−1(i)) =

min
σ∈Σn

max
i

d(yi, xσ(i)) = dCn(X)(y, x).

iv)

dCn(X)(x, z) + dCn(X)(z, y) =

min
σ∈Σn

max
i

d(xi, zσ(i)) + min
σ′∈Σn

max
σ(i)

d(zσ(i), yσ′(σ(i))) =

min
σ∈Σn

max
i

d(xi, zσ(i)) + min
σ′σ∈Σn

max
σ(i)

d(zσ(i), yσ′(σ(i))) ≥

min
σ′σ∈Σn

max
i

d(xi, yσ′(σ(i))) = dCn(X)(x, y).

We define a corresponding metric dC̃n(X) as follows

dC̃n(X)(x, y) = max
i=1,...,n

dX(xi, yi).

Notice that the canonical projection π : C̃n(X) → Cn(X) is a regular
covering. For any configuration x = {x1, . . . , xn} in Cn(X), we take a
δx > 0 satisfying δx < 1

2 mini,j d(xi, xj). Then, B(x, δ) ⊂ Cn(X) is well
covered by π. Let y ∈ Cn(X) such that y ∈ B(x, δ), then if we restrict on
each sheet of the covering, the metric dC̃n(X) coincide with dCn(X).

Observe that, π|B(x,δ) is invertible since it is an homeomorphism, and its
inverse π−1

|Bn associates a numbering (x1, . . . , xn) to x = {x1, . . . , xn}.

Notice that we can extend this numbering to all the points in B(x, δ).
Hence, if dCn(X)(x, y) < δ, there is a numbering associated to y by π−1

|Bn .

Moreover, π−1
|Bn is an isometry since X is locally isometric to π−1(X).

Fixed two base points ∗ ∈ Cn(G) and ∗̃ ∈ C̃n(G) such that π(∗̃) = ∗, an
n-braid B is a loop ω : [0, 1]→ Cn(X) based at ∗, while a pure n-braid P is
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a loop ω : [0, 1]→ C̃n(X) based at ∗̃.
The set of n-braids equipped with the operation of concatenation of loops
and quotiented out by the homotopy equivalence relation forms a group
called the braid group and denoted by Bn(X). In other words, the braid
group is the fundamental group of the configuration space of n points on
X :

Bn(X) = π1(Cn(X)).

Similarly, the pure braid group Pn(X) is the fundamental group of the
labeled configuration space:

Pn(X) = π1(C̃n(X)).

Up to the injective group homomorphism induced by the covering π, we
have the inclusion Pn(X) ⊂ Bn(X). Moreover, the path lifting property of
π determine a group homomorphism σ : Bn(X)→ Σn such that Pn(X) =
ker σ.

2.2 Classical braid groups

The theory of braids was classically developed for X = R2 starting from
the seminal work of Artin [Ar]. Braids on R2 admit a geometrical inter-
pretation in R3 as described below.
In R3, let us consider n points of coordinates (i, 0, 0) and n points of co-
ordinates (σB(i), 0, 1) for i = 1, . . . , n and σB ∈ Σn.

An n-braid B = A1 t A2 t · · · t An is a disjoint union of n arcs Ai from
(i, 0, 0) to (σB(i), 0, 1) such that the z-coordinate is monotonically increas-
ing along each Ai.

Two braids B, B′ are equivalent if there exists a continuous family of
braids (Bs)s∈[0,1] such that B0 = B and B1 = B′.

The composition of two braids B1, B2 is given by putting B2 on the top of
B1 and then rescaling their union, that is

B1B2 = (1, 1, 1/2)(B1 ∪ (B2 + (0, 0, 1))).

A presentation for the braid group Bn = Bn(R2) was given by Artin [Ar],
as follows:

Bn = 〈 σ1, . . . , σn | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for i + 1 < j 〉.

Here, the generator σi represents the n-braid where the i-th strand crosses
over the (i + 1)-th strand.



22 Chapter 2

Figure 2.2.3: Diagram of the n-braid σi.

n1 i + 1i

As a natural generalization of Bn, an Artin group A is a group with a
presentation of the following form:

A = 〈s1, . . . , sn | sisjsi . . .︸ ︷︷ ︸
mij

= sjsisj . . .︸ ︷︷ ︸
mji

for i 6= j〉

where mij ≥ 2 is even and mij = mji or mij = ∞.

A right-angled Artin group has a presentation in which mij ∈ {2, ∞} for
all i, j. It means that all the defining relations are commutators of the
generators: sisj = sjsi.

2.3 Braids on graphs

In the 1990’s, some mathematicians started working on the problem of
safe control schemes for automated guided vehicles (robots). The aim was
finding the best way to let the robots move in their workspace avoiding
collissions and at the same time guaranteeing a certain efficiency. The
workspace was modelled by configuration spaces on manifolds but, in
order to reduce the sophistication required for the production of these
robots, it was imagined to let them move only on guidepath wires and so,
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those mathematicians started studying configuration spaces on graphs.
In particular, we are going to see some results obtained by Robert Ghrist
in [Gh99] and [Gh07], concerning configuration spaces on graphs and
hence, concerning braids on graphs.

From now on G = (VG, EG, FG) will always denote a connected topo-
logical graph not homeomorphic to S1 and for the sake of simplicity, we
rename VG = V, EG = E, FG = F.

Theorem 2.3.1. ([Gh99], Theorem 2.6 and 3.3) Let G be a connected graph and
` be the cardinality of {v ∈ V : deg(v) > 2}. Then, the configuration spaces
C̃n(G) and Cn(G) strongly deform on a complex of dimension at most `.

Sketch of proof. The result is first proved for trees and then generalized
to any generic graph G by induction on the number of points n of Cn(G),
the number of edges which are incident to a vertex separated from a
terminal vertex by an edge and on the number of vertices with degree
greater than 2.

Observe that G cannot be homeomorphic to S1 indeed, in this case, G
has no vertices of degree greater than 2, but both its configuration spaces
C̃n(G) and Cn(G) strongly deform on S1.

Corollary 2.3.2. For any graph G with a single vertex v of degree k > 2, the
configuration spaces Cn(G) and C̃n(G) strongly deform on a graph.

The graphs with a single vertex of degree greater than 2 can be distin-
guished in the following families:

1) Tk with k ≥ 3, the radial tree consisting of k terminal vertices
v1, . . . , vk, a single vertex v0 of degree k and k edges such that each
edge ei joins v0 and vi;

2) Lk with k ≥ 2, the graph consisting of k loops all attached to a single
vertex v0 of degree 2k;

3) Gk,h with k, h ≥ 1, the graph consisting of k terminal vertices
v1, . . . , vk, a single vertex v0 of degree greater than 2, h loops at-
tached to v0 and k edges such that each edge ei joins v0 and vi for
i = 1, . . . , k. In particular the degree of v0 is equal to 2h + k.

In these cases it is possible to determine the braid groups by computing
the Euler characteristic of the graphs by Prop. 1.4.3.

Ghrist first in [Gh99] and then also in [Gh07], proved the following
result.
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Proposition 2.3.3. Let Tk be the radial tree consisting of k edges (not loops)
attached to a central vertex v0 of degree k. Then, the pure braid group PnTk is
isomorphic to a free group on

1 + (nk + 1− k− 2n)
(n + k− 2)!
(k− 1)!

generators.

Proof. The Euler characteristic of Cn(Tk) is computed using a double in-
duction on n and on k, fixing the point on the k-th edge of Tk which is
the farthest from the central vertex v0. So it can be obtained the following
expression:

χ(Cn(Tk)) = χ(Cn(Tk)) + nχ(Cn−1(Tk))− n
n−1

∏
i=1

(k + i− 2)

where the first term is due to the case where there are no points on the
interior of the k-th edge, the second term is given by fixing one point on
the k-th edge and the product is given by fixing one point on the central
vertex v0.

In [Gh99], it was hinted that if we consider the configuration space
Cn(Tk) we need to reduce χ(Tk) by a factor of n!.
This result was formalized and proved by Doig who constructed an ex-
plicit deformation retract of Cn(Tk).

Proposition 2.3.4. ([Do]) The braid group BnTk is a free group on

1 + (nk + 1− k− 2n)
(n + k− 2)!
n!(k− 1)!

generators.

In [Gh99], Ghrist also gave the following:

Conjecture 2.3.5. The braid group of any tree T is an Artin braid group.

In 2000, Abrams disproved this conjecture and revised it to apply only
on planar graphs in his Phd Thesis, which unfortunately, we did not
manage to consult.
The following further result was then proved in 2004 by Connoly and
Doig.
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Proposition 2.3.6. ([CD]) The tree braid group BnT is a right-angled Artin
group if T is linear.

Until talking of configuration spaces which can be deformed onto a
graph, we can describe them easily, but in general we do not.
In order to classify the configuration spaces of generic graphs, Ghrist and
Abrams have referred to the following approximation result.

Recall that any graph G is a 1-dimensional CW complex. Then, the n-
fold product of G inherits a cubical structure from G in such a way that
each cell is a product of n non necessarily distinct cells in G. But, as
soon as we remove the diagonal, the space C̃n(G) does not have a cell
structure anymore. Anyway, it is possible to lead back to a convenient
approximation of the whole configuration space.

Let ∆ = {(x1, x2, . . . , xn) ∈ Gn | xi = xj for i 6= j} be the diagonal of
Gn and ∆′ denote the union of the open cells in Gn whose closures inter-
sect ∆.

The discretized configuration space of n points on G is the maximum sub-
complex of C̃n(G) which does not intersect ∆, and we denote it by
D̃n(G) = Gn − ∆′.
Hence, any k-cell in D̃n(G) has the form c̄1 × · · · × c̄k, where each ci is a
cell of G and c̄i ∩ c̄j = ∅ for i 6= j.

The unlabeled discretized configuration space Dn(G) is the quotient of D̃n(G)
by the action of Σn.
In his thesis, Abrams proved the following theorem which later was
proved again also by Prue and Scrimshaw in [PS].

Theorem 2.3.7. (Subdivision theorem)
For n ≥ 2, let G be any graph with at least n vertices. Then the configuration
space C̃n(G) (respectively Cn(G)) strongly deforms onto the discretized space
D̃n(G) (respectively Dn(G)) if G is sufficiently subdivided, in the following
sense:

i) each path between distinct essential vertices has at least n− 1 edges;

ii) each cycle containing at least one essential vertex has at least n + 1 edges.

The subdivision theorem implies that if a graph G is sufficiently sub-
divided, C̃n(G) (respectively Cn(G)) is homotopy equivalent to D̃n(G) (re-
spectively Dn(G)).
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Sketch of the proof in [PS]. First it is proved that assuming G sufficiently
subdivided, then there exists a CW-structure on Cn(G) such that the in-
clusion map i : Dn(G) → Cn(G) is a cellular map, i.e. sends i-skeleta
in i-skeleta for all i. Then it is proved that the inclusion map i induces
isomorphisms on all homotopy groups.

In 2005, Farley and Sabalka proved Theor. 2.3.1 by using the Subdivi-
sion theorem and the discrete Morse theory in the following way.
First we have the case of a tree T.
Let us denote by Dn(T)

k
r the k-skeleton of Dn(T) with the redundant k-

cells removed and by Dn(T)
k
r,c the k-skeleton of Dn(T) with the redundant

and the critical k-cells removed.

Theorem 2.3.8. ([FS05], Theorem 4.3) Let T be a tree and c a critical cell of
Dn(T). Let k = min{

⌊n
2

⌋
, #{v ∈ T0, deg(v) > 2}. Then dim c ≤ k and so

Dn(T) strongly deforms on Dn(T)
k
r .

Sketch of proof. It can be proved that in c there are at least as many
vertices as edges. Since the dimension of c is equal to the number of
edges in c and the total number of cells in c is n, then dim c ≤ n

2 .
By definition of critical cell follows also the other bound for dim c.
Then, Dn(T) has no critical cells of dim ≥ k and it can be proved that
there is an isomorphism between πk−1(Dn(T)

k
r) and πk(Dn(T)

k
r,c). Hence,

Dn(T) strongly deforms on Dn(T)
k
r .

Now we see the case of a generic graph G.

Theorem 2.3.9. ([FS05], Theorem 4.4) Let G be a sufficiently subdivided graph
and χ(G) its Euler characteristic. Then, Dn(G) strongly deforms to a CW-
complex of dimension at most k, where

k = min
{
bn + 1− χ(G)

2
c, #{v ∈ G0 : deg(v) > 2}

}
.

Sketch of proof. First construct a maximal subtree of G such that all
the edges out of T neighbor the vertices of G of degree k > 2. Then, any
embedding of T in the plane induces a discrete gradient vector field such
that every edge in a critical cell contains a vertex of degree k > 2. Hence,
dimDn(G) ≤ k since the dimension of the critical cells of Dn(G) is less
than or equal to k with respect to the gradient vector field.
Then, observe that the number of edges out of T is equal to 1− χ(G) and
the dimension of any critical cell of Dn(G) is bounded by

1− χ(G) + bn− 1 + χ(G)

2
c.
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By using again the discrete Morse theory, they proved the following result
regarding presentations for fundamental groups of CW-complexes, which
they used then to compute presentations for the braid groups of trees.

Theorem 2.3.10. ([FS05], Theorem 2.5) Let X be a connected CW-complex with
a discrete gradient vector field W. Let T be the maximal tree of X consisting of
all the collapsible edges in X and additional critical edges if necessary. Then,

π1(X) ∼= 〈S|R〉

where S is the set of positive critical 1-cells not contained in T and R is the set
of certain reduced forms of the boundary of critical 2-cells.

Moreover, the result in Prop. 2.3.6 was widened as follows.

Theorem 2.3.11. ([FS08]) The tree braid group BnT is a right-angled Artin
group if and only if T is linear or n < 4.

Sketch of proof. (⇐) By Prop. 2.3.6, if T is a linear tree then BnT is a
right-angled Artin group. If T is a tree and n < 4, it follows by Theo-
rem 2.3.8.
(⇒) It can be proved by contradiction, assuming that T is non linear,
n ≥ 4 and BnT is a right-angled Artin group and then referring to the
cohomology rings and the critical cells of Cn(T).
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Chapter 3

Presentations of braid groups on graphs
via cubical complexes

In this chapter, we want to reduce the problem of computing a pre-
sentation for the braid group of graphs to just computing a presentation
for the fundamental group of a cubical complex, and hence by Prop. 1.4.5
it is sufficient to study the 1-cells and the 2-cells of the cubical complex.
First, we define a subspace Nn(G) of Cn(G) consisting of a kind of "nor-
malized" configurations such that, for each edge e of the graph G, the
first and the last point on e of the configuration are inside of two proper
intervals and the intermediate points are uniformly distributed between
them.
In the second section, we define a continuous mapping

Φ : Cn(G) → Cn(G)

such that Im Φ = Nn(G) and we prove that there exists a weak deforma-
tion of Cn(G) into Nn(G) by using Φ.
In the last section we construct a cubical complex Qn(G) homeomor-
phic to Nn(G) and we derive that the braid group on G is isomorphic
to the fundamental group of Qn(G). Hence, we are able now to compute
a presentation for the braid group by looking at the 1-cells and 2-cells of
Qn(G). Finally, in Prop. 3.3.5 we reduce the cubical complex Qn(G) to
a subcomplex which is still homotopic equivalent to Qn(G) in order to
simplify the computing.

3.1 The normalized configuration space Nn(G)

Let G = (V, E, F) be a connected graph not homeomorphic to S1 and
C(G) =

⋃
n≥0 Cn(G) be the set of all finite configurations in G.

Given a configuration x in C(G), we put xV = x ∩ V and similarly, for

29
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each e ∈ E, we put xe = x ∩ e◦ the set of points of x contained in the
interior of the edge e.
Notice that x is the disjoint union of xV and the xe’s.

Let ν : C(G) → {0, 1}V ×NE be the mapping sending a configuration
x ∈ C(G) to a couple nV,E(x) = ((nv(x))v∈V , (ne(x))e∈E) where

nv(x) =

{
1 if v ∈ x
0 otherwise

and ne(x) = |xe|. We also put nV(x) = ∑v∈V nv(x) = |xV |.

Definition 3.1.1. Let Cred(G) ⊂ C(G) be the subset of the configurations
x ∈ C(G) such that ne(x) ≤ 2 for each edge e.

Consider an edge e ∈ E between the vertices v, w ∈ V and take
the unique isometry αe,v,w : [−1

2 , 1
2 ] → e such that αe,v,w(−1

2) = v and
αe,v,w(

1
2) = w.

If xe 6= ∅, then we can write it as xe = {αe,v,w(t1), . . . , αe,v,w(tne(x))} such
that −1

2 < t1 < · · · < tne(x) < 1
2 , where ti is the coordinate of the i-th

point of xe according to the parametrization αe,v,w.
Let us call

te,v = t1

te,w = tne(x).
(3.1.1)

Remark 3.1.2. Observe that if v = w, both t1 and tne(x) are denoted by
te,v. Then, if we consider the opposite parametrization αe,w,v : [−1

2 , 1
2 ] → e

such that αe,w,v(t) = αe,v,w(−t), we still get the same two points denoted
again by te,v.
If v 6= w, and we consider the opposite parametrization αe,w,v, we get for
te,v and te,w the same two values found using αe,v,w but the notations te,v
and te,w are swapped.

Let us set:

t̄e,v = −1
2

ne(x)− 1
ne(x) + 1

t̄e,w =
1
2

ne(x)− 1
ne(x) + 1

(3.1.2)
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We call Ie,v = [−1
2 , t̄e,v] and Ie,w = [ t̄e,w, 1

2 ] the approaching interval respec-
tively to v and to w with respect to e.

Remark 3.1.3. These definitions are independent on the choice of the
parametrization. Indeed, if we consider parametrization αe,w,v, then we
still get the same coordinates t̄e,v and t̄e,w with v and w swapped if v 6= w.

Definition 3.1.4. Let G be a connected graph. The normalized configuration
space Nn(G) of n points on G is a subspace of Cn(G) consisting of the
configuration x ∈ Nn(G) which satisfies the properties below.
For each edge e ∈ E with endpoints v and w, consider xe = {x1 =
αe,v,w(t1), . . . , xne(x) = αe,v,w(tne(x))} such that −1

2 < t1 < · · · < tne(x) <
1
2 .

Then,

i) −1
2 < t1 ≤ t̄e,v and t̄e,w ≤ tne(x) <

1
2 .

ii) te,v = t̄e,v if te′,v < t̄e′,v for some edge e′ 6= e such that v ∈ e′

parametrized by αe′,v,w′ and similarly te,w = t̄e,w if te′,w > t̄e′,w for
some edge e′ 6= e such that w ∈ e′ parametrized by αe′,v′,w.

iii) t2, . . . , tne(x)−1 are uniformly distributed between t1 and tne(x) which
means that the subintervals [ti, ti+1] for i = 2, . . . , ne(x)− 2 have all
the same amplitude.

3.2 The weak deformation of Cn(G) into Nn(G)

Now we define a continuous function Φ : Cn(G) → Cn(G) such that
Im Φ = Nn(G) and then we use it to provide a weak deformation of
Cn(G) into Nn(G).

Given an edge e ∈ E of vertices v, w ∈ V, we define the following param-
eters which indicate the distances of te,v and te,w respectively from the
vertices v and w divided by the amplitude of the approaching intervals
Ie,v, Ie,w:

δe,v =

{
1 if xe = ∅
min(1, (1/2 + te,v)/(1/2 + t̄e,v)) otherwise

δe,w =

{
1 if xe = ∅
min(1, (1/2− te,w)/(1/2− t̄e,w)) otherwise



32 Chapter 3

Then we define the approaching parameters de,v of v and de,w of w with
respect to the edge e :

de,v =


0 if nv(x) = 1
1 if deg(v) = 1

min
{

δe′,v, e′ 6= e s.t. v ∈ e′
}

otherwise,

de,w =


0 if nw(x) = 1
1 if deg(w) = 1

min
{

δe′,w, e′ 6= e s.t. w ∈ e′
}

otherwise.

Finally, we put

re,v(x) =

{
1 if de,v = 0
min(1, δe,v/de,v) otherwise

re,w(x) =

{
1 if de,w = 0
min(1, δe,w/de,w) otherwise.

Then, we construct a function ϕ : C(G)→ Cred(G) sending a configuration
x ∈ C(G) to a reduced configuration ϕ(x) such that:

a) if ne(x) = 0, then ϕ(x)e = ∅.

b) if ne(x) = 1, that is xe consists of a single point x1 ∈ x, te,v = te,w = t1
and te,v = te,w = 0, then ϕ(x)e consists of a single point such that:

ϕ(x)e =


αe,v,w

(
− 1

2
+

re,v(x)
re,v(x) + re,w(x)

)
if − 1

2 < t1 < 0

αe,v,w

(1
2
− re,w(x)

re,v(x) + re,w(x)

)
if 0 < t1 < 1

2 .

c) If ne(x) ≥ 2, then

ϕ(x)e =
{

αe,v,w

(
− 1

2
+

re,v(x)
re,v(x) + re,w(x) + ne(x)− 1

)
,

αe,v,w

( 1
2
− re,w(x)

re,v(x) + re,w(x) + ne(x)− 1

)}
.

(3.2.3)

This means that for each edge e ∈ E, ϕ associates to xe the configuration
ϕ(x)e in (3.2.3) consisting of 2 points which depends on the coordinates
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te,v and te,w and on the values of the approaching parameters de,v, de,w.
Thus, the number of points constituting a configuration ϕ(x) ∈ Cred(G) is
nred(x) = ∑e∈E min(2, ne(x)) + nV(x).

Now define a function ρ : Cred(G)× ({0, 1}V ×NE)→ C(G) such that

ρ(x, nV,E)V = {v ∈ V : nv(x) = 1} = xV

and moreover,

i) if ne ≤ 2, then ρ keeps the points of xe, that is ρ(x, nV,E)e = xe;

ii) if ne > 2, then ρ adds ne − 2 points on the edge e whose coordinates
are uniformly distributed between te,v and te,w.
In this case, we write ρ as follows:

ρ(x, nV,E)e ={
αe,v,w

((
1− k

ne − 1

)
te,v +

k
ne − 1

te,w

)
for k = 0, · · · , ne − 1

}
.

Notice that x ⊂ ρ(x, nV,E), i.e. ρ keeps each configuration x ∈ Cred(G).
Moreover, observe that for any configuration x ∈ Cred(G), the configura-
tion ρ(x, nV,E) is obtained by convex combinations of points of x. Hence,
ρ is always continuous.

Finally, we define
Φ : C(G)→ C(G)

such that
Φ = ρ ◦ (ϕ× ν).

Proposition 3.2.1. For any configuration x ∈ Cn(G) and any numbering x̃ =

(x1, . . . , xn) ∈ C̃n(G) there exists a δ > 0 sufficiently small such that, for any
0 < δ < δ and for any y ∈ Cn(G) with dCn(G)(x, y) < δ, there exists a unique
numbering ỹ = (y1, . . . , yn) of y such that:

i) for all i = 1, . . . , n, xi and yi are the unique points respectively of x and y
such that dG(xi, yi) < δ, and so

dCn(G)(x, y) = max
i=1,...,n

dG(xi, yi).

ii) If xe = (xi1 , . . . , xik) then also ye = (yi1 , . . . , yik) where k = ne(x) =
ne(y) and the two numberings respect the same order along e.
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iii) If xi is a vertex v, then yi is the first point of y along the edge e which
minimizes δe,v among all the edges having v as an endpoint.

Proof. We assume that δ satisfies the following inequalities:

δ <
1
2

min
{

dG(xi, xj), for all i 6= j
}

, (3.2.4)

δ <
1
2

min
{

dG(xi, v), xi 6= v, v ∈ V
}

(3.2.5)

and

δ <
1

4 maxe∈E(ne(x) + 2)
min

e,v

(1
2
+ te,v

)
(3.2.6)

By (3.2.4) we have that for each point xi of x̃ there exists a unique point of
y which we denote by the same index yi such that dG(xi, yi) < δ. We put
ỹ = (y1, . . . , yn). Then, by definition of the metric dCn(G), it follows that
dCn(G)(x, y) = maxi=1,...,n dG(xi, yi). So condition i) is satisfied.

By (3.2.5) we have that ne(x) = ne(y) indeed if xi1 is the point of xe of
minimum distance from v, then yi1 is contained on the same edge e of xi.
Then, using again (3.2.4), we guarantee that the renumberings of xe and
ye respect the same order along e. Hence condition ii) is satisfied.
Finally, condition iii) is satisfied, indeed if xi = v then (3.2.6) guarantees
that there is a single point of y minimizing δe,v and moreover, by (3.2.4),
it has the same index i of xi.

Proposition 3.2.2. Φ is a continuous mapping.

Proof. First remind that function Φ is defined in such a way that for each
configuration x ∈ Cn(G) then Φ(x)V = xV and there is a bijection between
xe and Φ(x)e such that the order of numbering along e is preserved.
Consider the covering projection π : C̃n(G) → Cn(G) which sends a con-
figuration x̃ in C̃n(G) to a configuration x ∈ Cn(G). Then, we can construct
a function Φ̃ : C̃(G)→ C̃(G) such that Φ̃(x̃) = Φ(x) where Φ̃(x̃) inherites
the order of numbering along each edge e ∈ E by the configuration x̃. In
particular, π ◦ Φ̃ = Φ ◦ π.
Notice that in order to prove continuity of Φ, it is sufficient to prove the
continuity of Φ̃, indeed Φ is locally given by π ◦ Φ̃ ◦ π−1

| where π−1
| is a

local inverse of π defined on a well covered open set.
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Moreover, since C̃(G) ⊂ ⋃
n ∏n G, it is sufficient to verify the continuity

at each configuration x̃ ∈ C̃n(G) of each single component Φ̃i of Φ̃.

Since the function ρ is continuous, as we said above, it is enough to con-
sider the cases when Φ̃(x̃)i is a vertex w ∈ V or Φ̃(x̃)i is the first or the
last point of Φ̃(x) along an edge e. In the latter case, we verify just when
Φ̃(x̃)i is the last point Φ̃(x)e,w of Φ̃(x̃) along an edge e, indeed the proof
is independent on the choice of the parametrization.

Given a configuration x̃ ∈ C̃n(G), let ỹ be a configuration in C̃n(G), satis-
fying the conditions described in Prop. 3.2.1.

Case A If Φ̃(x̃)i is a vertex w ∈ V then, x̃i = w and there are the follow-
ing possibilities for ỹi.

1) ỹi = w, then also Φ̃(ỹ)i = w. Hence, limỹ→x̃ Φ̃(ỹ)i = Φ̃(x̃)i.

2) ỹi is the last point ye,w of y for some edge e between the vertices v
and w, such that δe,w < δe′,w for all the edges e′ 6= e which have w as
an endpoint.
If v ∈ x, then v = x̃j for some j and we have the following possibilitis
for ỹj.

2.1) ỹj is the vertex v or the first point ye′′,v for some edge e′′ such
that δe′′,v < δe,v. In this case, notice that ne(y) = ne(x) + 1,
re,v(x) = re,w(x) = re,v(y) = 1 while re,w(y) goes to zero as ỹ
tends to x̃. Then,

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= αe,v,w

(1
2

)
= Φ̃(x̃)i.

2.2) ỹj is the first point ye,v along e, then ne(y) = ne(x) + 2, re,v(x) =
re,w(x) = 1 while re,v(y) and re,w(y) go both to zero as ỹ tends
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to x̃. Hence,

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= αe,v,w

(1
2

)
= Φ̃(x̃)i.

If v 6∈ x, then let j be such that x̃j is the first point xe,v of x along e and
then, ỹj is the first point ye,v of y along e. Then, ne(y) = ne(x) + 1,
re,w(x) = 1 while re,w(y) goes to zero as ỹ tends to x̃. Then,

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= αe,v,w

(1
2

)
= Φ̃(x̃)i.

Case B If Φ̃(x̃)i is the last point Φ(x)e,w of Φ(x) along an edge e between
the vertices v and w then, x̃i is the last point xe,w of x along e and we need
to discuss the cases below.

1) If w ∈ x, then w = Φ̃(x̃)j for some j 6= i and we have three possible
cases for ỹj as follows.

1.1) If ỹj = w, then ỹi is the last point ye,w of y along e.

If v ∈ x, then v = x̃k for some k and in this case we have the
following possibilities for ỹk.

1.1.1) ỹk is the vertex v or the first point ye′,v for some edge e′

such that δe′,v < δe,v. In this case, notice that ne(y) = ne(x),
re,v(x) = re,w(x) = 1 and also re,v(y) = re,w(y) = 1. We
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have,

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= αe,v,w

(1
2
− 1

1 + ne(x)

)
= αe,v,w

(1
2
− re,w(x)

re,v(x) + re,w(x) + ne(x)− 1

)
= Φ̃(x̃)i.

1.1.2) ỹk is the first point ye,v along the edge e. Notice that
re,v(x) = re,w(x) = 1 and re,w(y) = 1, ne(y) = ne(x) + 1.
So, we get

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= lim

ỹ→x̃
αe,v,w

(1
2
− 1

re,v(y) + ne(y)

)
= αe,v,w

(1
2
− 1

ne(y)

)
= αe,v,w

(1
2
− 1

ne(x) + 1

)
= Φ̃(x̃)i.

If v 6∈ x, then let k be such that x̃k is the first point xe,v of
x along e and then, ỹk is the first point ye,v of y along e and
ne(y) = ne(x).
Notice that re,w(x) = re,w(y) = 1 and then,

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= lim

ỹ→x̃
αe,v,w

(1
2
− 1

re,v(y) + ne(y)

)
= αe,v,w

(1
2
− 1

re,v(x) + ne(x)

)
= Φ̃(x̃)i.

1.2) Assume ỹj is the last point ye,w of y along e such that δe,w(y) <
δe′,w(y) for all the edges e′ having w as an endpoint.
If v ∈ x, then v = x̃k for some k and in this case we have the
following possibilities for ỹk.
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1.2.1) ỹk is the vertex v or the first point ye′,v for some edge e′ such
that δe′,v < δe,v. In this case, notice that ne(y) = ne(x) + 1,
re,v(x) = re,w(x) = 1 and also re,v(y) = 1. Then,

lim
ỹ→x̃

Φ̃(ỹ)i =

lim
ỹ→x̃

αe,v,w

((
1− ne(y)− 2

ne(y)− 1

)(
− 1

2
+

re,v(y)
re,v(y) + re,w(y) + ne(y)− 1

)
+

ne(y)− 2
ne(y)− 1

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

))
= αe,v,w

( 1
ne(y)− 1

(
− 1

2
+

1
ne(y)

)
+

1
2

ne(y)− 2
ne(y)− 1

)
= αe,v,w

( (ne(y)− 2)(ne(y)− 1)
2ne(y)(ne(y)− 1)

)
= αe,v,w

( ne(x)− 1
2(ne(x) + 1)

)
= Φ̃(x̃)i.

1.2.2) ỹk is the first point ye,v along the edge e. Notice that
re,v(x) = re,w(x) = 1 while re,v(x) and re,w(y) go both to
zero as ỹ tends to x̃. Moreover, ne(y) = ne(x) + 2. Hence,

lim
ỹ→x̃

Φ̃(ỹ)i =

lim
ỹ→x̃

αe,v,w

((
1− ne(y)− 2

ne(y)− 1

)(
− 1

2
+

re,v(y)
re,v(y) + re,w(y) + ne(y)− 1

)
+

ne(y)− 2
ne(y)− 1

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

))
= αe,v,w

(
− 1

2(ne(y)− 1)
+

ne(y)− 2
2(ne(y)− 1)

)
= αe,v,w

( ne(y)− 3
2(ne(y)− 1)

)
= αe,v,w

( ne(x)− 1
2(ne(x) + 1)

)
= Φ̃(x̃)i.

If v 6∈ x, let k be such that x̃k is the first point xe,v of x along
e and then, ỹk is the first point ye,v of y along e and ne(y) =
ne(x) + 1. Notice that re,w(x) = 1 and re,w(y) goes to zero as ỹ
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tends to x̃. Hence,

lim
ỹ→x̃

Φ̃(ỹ)i =

lim
ỹ→x̃

αe,v,w

((
1− ne(y)− 2

ne(y)− 1

)(
− 1

2
+

re,v(y)
re,v(y) + re,w(y) + ne(y)− 1

)
+

ne(y)− 2
ne(y)− 1

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

))
= αe,v,w

( 1
ne(x)

(
− 1

2
+

re,v(x)
re,v(x) + ne(x)

)
+

ne(x)− 1
2ne(x)

)
= αe,v,w

(ne(x) + re,v(x)− 2
2(re,v(x) + ne(x)

)
= αe,v,w

(1
2
− re,w(x)

re,v(x) + re,w(x) + ne(x)− 1

)
= Φ̃(x̃)i.

1.3) Consider the case when ỹj is the last point ye′,w of y along an
edge e′ which has w as an endpoint and such that δe′,w(y) <
δe,w(y). Then, ỹi = ye,w, ỹj = ye′,w.
If v ∈ x, then v = x̃k for some k and in this case we have the
following possibilities for ỹk.

1.3.1) ỹk is the vertex v or the first point ye′,v for some edge e′

such that δe′,v < δe,v. In this case, notice that ne(y) = ne(x),
re,v(x) = re,w(x) = 1 and also re,v(y) = re,w(y) = 1. Hence,

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= αe,v,w

(1
2
− 1

ne(y) + 1

)
= αe,v,w

(1
2
− 1

ne(x) + 1

)
= Φ̃(x̃)i.

1.3.2) ỹk is the first point ye,v along the edge e. Notice that
re,v(x) = re,w(x) = 1 and re,w(y) = 1, while re,v(x) goes to
zero as ỹ tends to x̃. Moreover, ne(y) = ne(x) + 1. Hence,



40 Chapter 3

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= lim

ỹ→x̃
αe,v,w

(1
2
− 1

re,v(y) + ne(y)

)
= αe,v,w

(1
2
− 1

ne(y)

)
= αe,v,w

(1
2
− 1

ne(x) + 1

)
= Φ̃(x̃)i.

If v 6∈ x, then let k be such that x̃k is the first point xe,v of x
along e and then, ỹk is the first point ye,v of y along e. Notice
that ne(y) = ne(x), re,w(x) = re,w(y) = 1 and re,v(y) goes to
re,v(x) as ỹ tends to x̃. Then,

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= lim

ỹ→x̃
αe,v,w

(1
2
− 1

re,v(y) + ne(y)

)
= αe,v,w

(1
2
− 1

re,v(x) + ne(x)

)
= Φ̃(x̃)i.

2) if w 6∈ x, then also w 6∈ y.
If v ∈ x, then v = x̃j for some j and in this case we have the following
possibilities for ỹj.

2.1) ỹj is the vertex v or the first point ye′,v for some edge e′ such
that δe′,v < δe,v. Notice that ne(y) = ne(x), re,v(x) = re,v(y) = 1
and re,w(y) goes to re,w(x) as ỹ tends to x̃. Then,

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= lim

ỹ→x̃
αe,v,w

(1
2
− re,w(y)

re,w(y) + ne(y)

)
= αe,v,w

(1
2
− re,w(x)

re,w(x) + ne(x)

)
= Φ̃(x̃)i.
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2.2) ỹj is the first point ye,v along the edge e, then ne(y) = ne(x) + 1,
re,v(x) = 1 while re,v(y) goes to zero as ỹ tends to x̃. Then,

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= αe,v,w

(1
2
− re,w(x)

re,w(x) + ne(y)− 1

)
= αe,v,w

(1
2
− re,w(x)

re,w(x) + ne(x)

)
= Φ̃(x̃)i.

If v 6∈ x, then let j be such that x̃j is the first point xe,v of x along
e and then, ỹj is the first point ye,v of y along e and ne(y) = ne(x).
Hence,

lim
ỹ→x̃

Φ̃(ỹ)i = lim
ỹ→x̃

Φ(y)e,w

= lim
ỹ→x̃

αe,v,w

(1
2
− re,w(y)

re,v(y) + re,w(y) + ne(y)− 1

)
= αe,v,w

(1
2
− re,w(x)

re,v(x) + re,w(x) + ne(x)− 1

)
= Φ̃(x̃)i.

Proposition 3.2.3. Let G be a connected graph and Φ defined on Cn(G), then
Im Φ = Nn(G).

Proof. (⊆) Let y ∈ Cn(G) be a configuration in Im Φ. Then, y ∈ Nn(G)
since all the conditions of Prop. 3.1.4 are satisfied by the definition of
function Φ.

(⊇) Let y ∈ Nn(G), then, for each edge e ∈ E, −1
2 < t1 ≤ t̄e,v and t̄e,w ≤

tne(x) <
1
2 . Notice that the values of Φ(x)e,v and Φ(x)e,w can be computed

for each edge e of G, so by continuity of function Φ we can always choose
another configuration x ∈ Cn(G) such that xV = yV , ne(x) = ne(y), y1 =
Φ(x)e,v and yne(y) = Φ(x)e,w for each e ∈ E. Hence, Φ(x) = y, so y ∈ Im Φ.

Proposition 3.2.4. Φ gives a weak deformation of Cn(G) into Nn(G).
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Proof. Remind that any configuration x can be written as x = xV te∈E xe,
so we rewrite Φ(x) = Φ(x)V te∈E Φ(x)e.

Let us define a homotopy ht : Cn(G)→ Cn(G) such that

ht(x) = (1− t)x + tΦ(x) (3.2.7)

for all t ∈ [0, 1], in the sense we are going to explain.

First, Φ(x)V = xV and hence ht(x)V = xV for all t ∈ [0, 1].
Assume ne(x) = k, then also ne(Φ(x)) = k and consider

xe =
{

x1 = αe,v,w(r1), . . . , xk = αe,v,w(rk)
}

with −1
2 < r1 < · · · < rk <

1
2 and

Φ(x)e =
{

y1 = αe,v,w(s1), . . . , yk = αe,v,w(sk)
}

with −1
2 < s1 < · · · < sk <

1
2 .

Let us set

zi(t) = (1− t)xi + tyi = αe,v,w((1− t)ri + tsi)

for all i = 1, . . . , k and for all t ∈ [0, 1].

Then,

ht(x)e = (1− t)(xe) + t(Φ(x)e) =
{

z1(t), . . . , zk(t)
}

for all t ∈ [0, 1].

Observe that
h0(x)e =

{
zi(0)

}
i = xe

and also
h1(x)e =

{
zi(1)

}
i = Φ(x)e.

So far we have verified that h0 = idCn(G) and h1(x) ∈ Im Φ for all x ∈
Cn(G). Now we also verify that ht(x) ∈ Im Φ for all x ∈ Im Φ and for all
t ∈ [0, 1].
Let us consider a configuration x′ ∈ Im Φ and let x ∈ Cn(G) be such that
x′ = Φ(x).
Again assume ne(x) = k.
We consider

Φ(x′) = Φ(x′)V te∈E Φ(x′)e
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and we set
xe = {x1 = αe,v,w(r1), . . . , xk = αe,v,w(rk)}

such that r1 < · · · < rk,

x′e =
{

x′1 = αe,v,w(s1), . . . , x′k = αe,v,w(sk)
}

such that −1
2 < s1 < · · · < sk <

1
2 and

Φ(x′)e =
{

Φ(x′)1 = αe,v,w(u1), . . . , Φ(x′)k = αe,v,w(uk)
}

such that −1
2 < u1 < . . . uk <

1
2 .

Observe that ht(x′)V = x′V for all t ∈ [0, 1] since Φ(x′)V = x′V .

Then,

ht(x′)e,v = αe,v,w((1− t)r1 + tu1)

ht(x′)e,w = αe,v,w((1− t)rk + tuk)

for all t ∈ [0, 1]. Hence, the coordinate of ht(x′)e,v is contained in the in-
terval (−1

2 , r̄e,v] and the coordinate of ht(x′)e,w in [r̄e,w, 1
2). Indeed, both r1

and u1 are contained in these intervals since x′ and Φ(x′) are contained
in Im Φ. Thus, a convex combination of their coordinates is still contained
in it.
Moreover, the coordinate of ht(x′)e,v coincides with r̄e,v if there is some
ht(x′)e′,v such that δe′,v < δe,v for some edge e′ 6= e. Indeed, condition
ii) in Def. 3.1.4 holds for r1 and u1 since x′ and Φ(x′) are contained in
Im Φ and again a convex combination of their coordinates still satisfy the
condition.
Analogous reasonings are valid with respect to the vertex w.

Then, notice that the intermediate points x′2, . . . , x′k−1 are uniformly dis-
tributed between x′1 and x′k, so we can write their coordinates as(

1− i
k− 1

)
s1 +

i
k− 1

sk

for i = 1, . . . , k− 2.
Analogously, the intermediate points Φ(x′)2, . . . , Φ(x′)k−1 are uniformly
distributed between Φ(x′)1 and Φ(x′)k, thus we can write their coordi-
nates as (

1− i
k− 1

)
u1 +

i
k− 1

uk
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for i = 1, . . . , k− 2.

Then, the intermediate points ht(x′)i = (1 − t)x′i + tΦ(x′)i for i =
1, · · · , k − 2 are uniformly distributed since we can rewrite their coor-
dinates as follows:

(1− t)

((
1− i

k− 1

)
s1 +

i
k− 1

sk

)
+ t

((
1− i

k− 1

)
u1 +

i
k− 1

uk

)

=

(
1− i

k− 1

) (
(1− t)s1 + tu1

)
+

i
k− 1

(
(1− t)sk + tuk

)
for all t ∈ [0, 1].

Hence, Im Φ is a weak deformation of Cn(G) and so Nn(G) is a weak
deformation of Cn(G) since Im Φ = Nn(G).

Given a connected graph G, consider the subset

V1 = {v ∈ V|deg(v) ≤ 1}.

We denote by C ′n(G) the subset of Cn(G) consisting of the configurations
of Cn(G) which satisfy for each vertex v ∈ V1 and each edge e ∈ E with
v ∈ e,

xe = {x1 = αe,v,w(t1), . . . , xne(x) = αe,v,w(tne(x))}

with t̄e,v ≤ t1 < · · · < tne(x) <
1
2 .

Proposition 3.2.5. Φ(C ′n(G)) is a weak deformation of C ′n(G).

Proof. The proof is analogous to that of Prop. 3.2.4 except for the edges
containing a terminal vertex. Let x ∈ C ′n(G) and consider an edge e
containing v ∈ V1. Then,

xe = {x1 = αe,v,w(t1), . . . , xne(x) = αe,v,w(tne(x))}

with t̄e,v ≤ t1 < · · · < tne(x) <
1
2 . Then it is sufficient to observe that also

the image

Φ(x)e =
{

y1 = αe,v,w(u1), . . . , yk = αe,v,w(une(x))
}

with ūe,v ≤ u1 < · · · < une(x) < 1
2 is contained in C ′n(G). Thus, the

proposition follows again using the same reasoning of Prop. 3.2.4.
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3.3 The cubical complex Qn(G)

Proposition 3.3.1. Given a connected graph G, we can associate to the normal-
ized configuration space Nn(G) a cubical complex structure which we denote by
Qn(G). In particular, dimQn(G) ≤ min{n, |V|}.

Proof. In order to construct Qn(G) we describe its cells.
The 0-cells of Qn(G) are the configurations in Cn(G) satisfying the condi-
tions below.
For each edge e whose vertices are v and w, consider the parametrization
αe,v,w of e from v to w and xe = {x1 = αe,v,w(r1), . . . , xk = αe,v,w(rk)} such
that −1

2 < r1 < · · · < rk <
1
2 assuming ne(x) = k. Then,

i) r1 = r̄e,v where r̄e,v is defined as t̄e,v in (3.1.2);

ii) rk = r̄e,w where r̄e,w is defined as t̄e,w in (3.1.2);

iii) the intermediate points are uniformly distributed along e between
x1 and xk.

Notice that any configuration x satisfying the conditions above can be
uniquely determined by ν(x), hence, we can identify each 0-cell with the
couple ((nv(x))v∈V , (ne(x))e∈E) such that ∑v nv + ∑e ne = n.

Let x =
(
nv(x), ne(x)

)
and x′ =

(
nv(x′), ne(x′)

)
be two 0-cells of Qn(G)

which, for an edge e0 and a vertex w0 such that w0 ∈ e0, satisfy the
following conditions:

nv(x′) =

{
nv(x) + 1 if v = w0

nv(x) otherwise

ne(x′) =

{
ne(x)− 1 if e = e0

ne(x) otherwise.

Then a 1-cell s of Qn(G) is an oriented edge from x to x′.

Let v0 and w0 be the vertices of e0 and αe0,v0,w0 : [−1
2 , 1

2 ] → e0 be the
parametrization of e0 such that αe0,v0,w0(−1

2) = v0 and αe0,v0,w0(
1
2) = w0.

Assume ne0(x) = k and hence ne0(x′) = k− 1.
Consider

xe0 = {x1 = αe0,v0,w0(r1), . . . , xk = αe0,v0,w0(rk)}
and

x′e0
= {x′1 = αe0,v0,w0(r

′
1), . . . , x′k−1 = αe0,v0,w0(r

′
k−1)}.
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We set
x′k = αe0,v0,w0(r

′
k) = αe0,v0,w0(

1
2
) = w0.

Consider the injective parametrization βs : [0, 1] → Cn(G) such that
βs(0) = x, and βs(1) = x′ defined by

βs(t)i = αe0,v0,w0

(
(1− t) ri + tr′i

)
for i = 1, . . . , k.

Remark 3.3.2. If e0 is not a loop, there is only one possibility to choose
the parametrization αe0,v0,w0 in order have nw0(x) = 0 and nw0(x′) = 1.
Hence, there is exactly one 1-cell from x to x′.

If e0 is a loop with a single vertex w0, then there are two opposite
parametrizations of e0 and hence two different points on e0 can be moved
towards the vertex w0. Hence, we have two distinct 1-cells of Qn(G) from
x to x′.

A 2-cell a of the cubical complex Qn(G) is a square attached to four
0-cells x =

(
nv(x), ne(x)

)
, y =

(
nv(y), ne(y)

)
, y′ = (nv(y′), ne(y′)), z =

(nv(z), ne(z)) and four 1-cells s1, s′1, s2, s′2 of Qn(G) which satisfy the fol-
lowing conditions.
Let us consider two distinct edges e0, e′0 ∈ E and two distinct vertices
w0, w′0 ∈ V. Then, the four 0-cells must satisfy:

nv(y) =

{
nv(x) + 1 if v = w0

nv(x) otherwise,

ne(y) =

{
ne(x)− 1 if e = e0

ne(x) otherwise,

and

nv(y′) =

{
nv(x) + 1 if v = w′0
nv(x) otherwise,

ne(y′) =

{
ne(x)− 1 if e = e′0
ne′(x) otherwise,
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nv(z) =

{
nv(x) + 1 if v = w0, w′0
nv(x) otherwise,

ne(z) =

{
ne(x)− 1 if e = e0, e′0
ne(x) otherwise.

The four 1-cells are the oriented edges s1 from x to y, s′1 from x to y′, s2
from y to z and s′2 from y′ to z.

Take two parametrizations αe0,v0,w0 and αe′0,v′0,w′0
respectively of the

edges e0 and e′0 and consider xe0 = {x1, . . . , xk} and xe′0
= {x′1, . . . , x′k′}.

For the edges s1, s′1, s2, s′2 we consider the parametrizations

βs1 : t1 → Cn(G) and βs′2
: t1 → Cn(G)

depending on the parameter t1 and

βs2 : t2 → Cn(G) and βs′1
: t2 → Cn(G)

depending on the parameter t2 as defined before. Notice that the points
of xe0 moves indipendently from those of xe′0

since e0 6= e′0. Then, we define
βa : [0, 1]2 → Cn(G) sending t = (t1, t2) ∈ [0, 1]2 to the unique configura-
tion βa(t) such that

βa(t) ∩ ē0 = βs1(t1) ∩ ē0 = βs′2
(t1) ∩ ē0

βa(t) ∩ ē′0 = βs′1
(t2) ∩ ē′0 = βs2(t2) ∩ ē′0

βa(t) ∩ (G− ē0 ∪ ē′0) = x ∩ (G− ē0 ∪ ē′0).

It is also possible to define βa explicitely using the following notation
which include directly the dependence on the parameters:

βa(t1, t2) = xt1t2 .

In this way we denote the 0-cells by x00 = x, x10 = y, x01 = y′ and
x11 = z. Then, we can write

xt1t2
i = (1− t1)(1− t2)x00

i + t1(1− t2)x10
i +(1− t1)t2x01

i + t1t2x11
i (3.3.8)

for i = 1, . . . , ne0(x).
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Figure 3.3.4: A 2-cell of Qn(G).

x

y′y

z

s1 s′1

s2 s′2

So far we have assumed e0 6= e′0, now consider e0 = e′0 and see how the
construction above must be modified.
Let e0 ∈ E have the vertices v0 and w0 as endpoints. Then w′0 = v0 since
w0 6= w′0. Hence the conditions on the 0-cells x, y, y′ are the same while
the conditions on z must be rewritten as follows:

nv(z) =

{
nv(x) + 1 if v = w0, w′0
nv(x) otherwise

ne(z) =

{
ne(x)− 2 if e = e0

ne(x) otherwise.

In this case, the points of x on e0 move depending on both parameters
t1 and t2 at the same time and we can use the same formula (3.3.8) to
define xt1t2 .

It is possible to generalize this reasoning to construct an m-cell c ofQn(G).
In this case we denote with xi1...im the 0-cells of Qn(G) with i1, . . . , im =
0, 1 depending on the value of parameters t1, . . . , tm.
Then, as before if all the edges e1, . . . , em are distinct, then the points on
each edge ei of configuration xt1,...,tm depend only on one parameter ti at
a time, while if there are some coincident edges, we need a combination
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of pairs of parameters as seen in the case of the 2-cells.
By the parametrizations defined above, we have constructed the cubical
complex Qn(G) directly inside the configuration space Cn(G) in such a
way that coincides with Nn(G).

Notice that an m-cell of Qn(G) indicates that there are m points on the
interiors of some edges of G which are moving towards m vertices of G.
Hence, m cannot exceed the number of points n on G or the number of
vertices |V| of G.

Proposition 3.3.3. Given the cubical complex Qn(G), a presentation for the
fundamental group of the 2-skeleton π1(Q2

n(G)) is a presentation for the the
n-braid group Bn(G).

Proof. First we prove that Bn(G) is isomorphic to π1(Qn(G)). By
Prop. 3.3.1, Qn(G) coincides with Nn(G) and by Prop. 3.2.4, Nn(G) is
a weak deformation of Cn(G), hence,

Bn(G) ∼= π1(Cn(G)) ∼= π1(Nn(G)) ∼= π1(Qn(G)).

Then, in order to get a presentation for the braid group Bn(G) we can
compute a presentation for the fundamental group π1(Qn(G)) and by
Prop. 1.3.5 and Prop. 1.4.5 we can consider just the 2-skeleton of Qn(G).

Definition 3.3.4. Let Q′n(G) be the subcomplex of Qn(G) obtained elimi-
nating all the 0-cells of Qn(G) of the form x = (nv(x), ne(x))v∈V,e∈E such
that there is at least one terminal vertex v0 ∈ V1 with nv0(x) = 1 and
eliminating all the m-cells containing those 0-cells, for m ≥ 1. In particu-
lar, dimQ′n(G) ≤ min(n, `) where ` = |V −V1|.

Notice that the dimension of Q′n(G) is bounded in an analogous way
with respect to Qn(G).

Proposition 3.3.5. Given the cubical subcomplex Q′n(G), a presentation for the
fundamental group of the 2-skeleton of Q′n(G) is a presentation for the n-braid
group Bn(G).

Proof. The definition given for the cubical subcomplex Q′n(G) is equiv-
alent to construct the cubical complex which coincides with C ′n(G). By
Prop. 3.2.5, C ′n(G) is a weak deformation of Cn(G), hence

Bn(G) ∼= π1(Cn(G)) ∼= π1(C ′n(G)) ∼= π1(Q′n(G)).
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Then, by Prop. 1.3.5 and Prop. 1.4.5 we are able to compute a presentation
for π1(Q′n(G)) considering the 2-skeleton of Q′n(G).

Corollary 3.3.6. For any connected graph G not homeomorphic to S1 and such
that G contains one single vertex v0 of degree k > 2, then the braid group Bn(G)
is a free group.

Proof. By hypothesis |V − V1| = 1, so dimQ′n(G) ≤ min(n, 1) which
means that the subcomplex Q′n(G) is a graph. Then, by Prop. 1.4.2 the
braid group Bn(G) is a free group.
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Applications and examples

In this chapter we analyze some classes of connected graphs and we
use the cubical subcomplexes Q′n(G) in order to obtain presentations for
the braid groups on those graphs.
First, we discuss the family Tk of radial trees consisting of k edges and
we prove again the results in Prop. 2.3.4 and Prop. 2.3.3 already seen in
Chapter 2. Then, we find analogous results for the family Lk of bouquets
of k loops.
For both these families we include some examples and some figures of
the corresponding cubical subcomplexes Q′n(Tk) and Q′n(Lk) made using
Wolfram Mathematica. After that, we compute some presentations for the
braid groups of other examples and we compare them to already known
outcomes whenever possible. In particular we see the simplest graph T
which contradicts Ghrist’s conjecture, [Gh99].
To do the computation, we use a Mathematica code which first calcu-
lates a presentation for the fundamental group of the cubical subcomplex
Q′n(G) as proved in Prop.1.4.5, and then, when needed, it applies the
Tiezte transformations in order to simplify the presentation. The code
used either for computing the presentations and for creating the figures
can be found in detail in Appendix A.

4.1 Radial trees Tk

Let Tk be a radial connected graph consisting of k ≥ 3 terminal vertices
v1, . . . , vk, a vertex v0 of degree k and k edges e1, . . . , ek such that each ei
joins v0 and vi for i = 1, . . . , k.

Let us consider the cubical subcomplex Q′n(G) and notice that by
Corol. 3.3.6, it is a graph since it has a single vertek of degree greater
than 2.

51
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Proposition 4.1.1. The braid group Bn(Tk) is isomorphic to a free group on

1− (n + k− 2)!(2n + k− nk− 1)
n!(k− 1)!

generators.
The pure braid group Pn(Tk) is isomorphic to a free group on

1− (n + k− 2)!(2n + k− nk− 1)
(k− 1)!

generators.

Proof. By Prop. 3.3.5, Bn(Tk) ∼= π1(Q′n(Tk)) and by Prop. 1.4.3 we need to
compute the Euler characteristic of Q′n(Tk) to find the number of genera-
tors of the free group.
First, we observe that the vertices of Q′n(Tk) are the configurations satis-
fying one of the following characteristics:

i) one point lays on v0 and the other n− 1 points are distributed in the
interiors of the k edges e1, . . . , ek;

ii) all the n points are distributed in the interiors of the k edges
e1, . . . , ek.

Then, we count the vertices satisfying i) as (k − 1)-combinations with
repetitions of n− 1 elements and hence they are exactly (n+k−2

n−1 ). Similarly
we count the vertices satisfying ii) as k-combinations with repetitions of
n elements and hence they are exactly (n+k−1

n ). Hence, there are(
n + k− 2

n− 1

)
+

(
n + k− 1

n

)
0-cells of Q′n(Tk).

The 1-cells of Q′n(Tk) are the oriented edges from a vertex of type ii) to a
vertex of type i).
Notice that each vertex of type i) has degree equal to k, indeed the point
which occupies v0 can come from any of the k edges of Tk.
In a similar way, each vertex of type ii) has degree equal to the number of
non-empty edges of Tk, indeed each non-empty edge of Tk has one point
which can occupy the vertex v0.
Then, the total number of 1-cells of Q′n(TK) is:

1
2

(
k
(

n + k− 2
n− 1

)
+

k

∑
l=1

l
(

k
l

)(
n− 1
n− l

))
= k

(
n + k− 2

n− 1

)
.
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Finally, the Euler characteristic of Q′n(Tk) is

χ(Q′n(Tk)) =

(
n + k− 2

n− 1

)
+

(
n + k− 1

n

)
− k
(

n + k− 2
n− 1

)
=(1− k)

(n + k− 2)!
(n− 1)!(k− 1)!

+
(n + k− 1)!
n!(k− 1)!

=
(n + k− 2)!(2n + k− nk− 1)

n!(k− 1)!

Hence, the braid group Bn(Tk) is isomorphic to a free group on

1− χ(Q′n(Tk)) = 1− (n + k− 2)!(2n + k− nk− 1)
n!(k− 1)!

(4.1.9)

generators. Then, notice that if we multiply by a factor n! the Euler char-
acteristic for Q′n(Tk), we obtain the Euler characteristic for the labeled
configuration space Q̃′n(Tk). Hence, the number of generators for Pn(Tk)
is

1− χ(Q̃′n(Tk)) = 1− (n + k− 2)!(2n + k− nk− 1)
(k− 1)!

These results agree with those already seen in Prop. 2.3.4 and in
Prop. 2.3.3.

In particular, by (4.1.9), the braid group Bn(T3) is isomorphic to a free
group on n(n−1)

2 generators and the braid group Bn(T4) is isomorphic to
a free product on n(n−1)(2n+5)

6 generators.

Let us see some examples.
Consider the graph T3 and rename it Y.
For n = 1, the braid group B1(Y) ∼= 0 since Q′1(Y) is a tree isomorphic to
Y.
For n = 2, the cubical subcomplex Q′2(Y) has three vertices of type i) of
degree 3 and six vertices of type ii) arranged as in Figure 4.1.7.

Observe that there is only one generator since there is only one edge
out of the chosen maximal spanning tree. Hence, the braid group B2(Y)
is isomorphic to a free group on one generator,

B2Y ∼= π1(D2(Y)) ∼= Z.

For n = 3, the cubical subcomplex Q′3(Y) has six vertices of type i) and
ten vertices of type ii) as in Figure 4.1.8. As soon as we choose a spanning
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Figure 4.1.5: Graph Y.

v1

e1

v0
e2

v2 v3

e3

Figure 4.1.6: The subcomplex Q′1(Y).

tree of Q′3(Y) we notice that there are three edges out of it and hence a
presentation for π1(Q′3(Y)) has three generators. Thus, the braid group
B3(Y) is isomorphic to a free group on three generators,

B3Y ∼= π1(D3(Y)) ∼= F3.

For n = 4, observe in Figure 4.1.9 the subcomplex Q′4(Y). Notice that
there are six edges outside of the maximal tree. Hence, we get:

B4Y ∼= F6.
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Figure 4.1.7: The subcomplex Q′2(Y) with the chosen maximal spanning tree
in black.



56 Chapter 4

x1

x2x3

Figure 4.1.8: Q′3(Y) with the chosen maximal spanning tree in black.
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Figure 4.1.9: The cubical complex Q′4(Y) with the maximal tree chosen in
black.
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Let us call X the graph T4.

Figure 4.1.10: Graph X.

v4v1

e1 e4

v0e2

v2 v3

e3

For n = 1, the braid group B1(X) is trivial since Q′n(X) is a tree
isomorphic to X.

For n = 2, let us observe in Figure 4.1.11 the subcomplex Q′2(X).
Notice that there are three edges outside of the maximal tree. Hence, we
have:

π1(Q′2(X)) = 〈x1, x2, x3〉 that is B2(X) ∼= F3.

In a similar way, if we consider Q′3(X) then its fundamental group has a
presentation consisting of eleven generators. Hence, B3(X) ∼= F11.
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Figure 4.1.11: The cubical subcomplex Q′2(X) with the chosen maximal tree
highlighted in black.
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x1

x5

x

Figure 4.1.12: The cubical subcomplex Q′3(X) with the chosen maximal span-
ning tree in black.
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4.2 Bouquets of loops Lk

Let Lk be a graph consisting of k loops and a single vertex v0 of degree
2k. First notice that Q′n(Lk) = Qn(Lk) since there are no terminal vertices
in Lk and by Prop. 2.3.1, the dimension of Qn(Lk) is equal to 1 since there
is one single vertex of degree greater than 2, that is Qn(Lk) is a graph.

Proposition 4.2.1. The braid group Bn(Lk) is isomorphic to a free group on

1− (n + k− 2)!(2n + k− 2nk− 1)
n!(k− 1)!

generators.
The pure braid group Pn(Lk) is isomorphic to a free group on

1− (n + k− 2)!(2n + k− 2nk− 1)
(k− 1)!

generators.

Proof. The braid group Bn(Lk) is a free group since Qn(Lk) is a graph.
Then, in order to compute the number of generators we need to find the
Euler characteristic of Qn(Lk).
We follow a reasoning similar to that used in Qn(Tk) in order to describe
and count the 0-cells and the 1-cells of Qn(Lk).
The 0-cells of Qn(Lk) are the configurations satisfying one of the follow-
ing characteristics:

i) one point lays on v0 and the other n− 1 points are distributed in the
interiors of the k loops e1, . . . , ek;

ii) all the n points are distributed in the interiors of the k loops
e1, . . . , ek.

Then, we count the vertices satisfying i) as combinations with repetitions
of n− 1 elements and hence they are exactly (n+k−2

n−1 ). Similarly we count
the vertices satisfying ii) as combinations with repetitions of n elements
and hence they are exactly (n+k−1

n ). So, we have that the number of 0-cells
of Qn(Lk) is (

n + k− 2
n− 1

)
+

(
n + k− 1

n

)
.

Notice that this number coincide with that of Q′n(Tk).
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The 1-cells of Qn(Lk) are the oriented edges from a vertex of type ii) to a
vertex of type i). Remind that for each 0-cell having points on a loop there
are two distinct 1-cells, hence the number of 1-cells of Qn(Lk) is twice the
number of 1-cells of Q′n(Tk).
Finally, the number of generators is equal to

1− χ(Qn(Lk)) =1−
((n + k− 2

n− 1

)
+

(
n + k− 1

n

)
− 2k

(
n + k− 2

n− 1

))
=1− (n + k− 2)!(2n + k− 2nk− 1)

n!(k− 1)!

To get the number of generators for Pn(Lk) it is sufficient to compute
χ(Q̃n(Lk)) by multiplying χ(Qn(Lk)) by a factor n!.

In particular, the braid group Bn(L2) is isomorphic to a free product
on 2n generators, Bn(L3) is isomorphic to a free product on n(2n + 1)
generators and Bn(L4) is isomorphic to a free product on 2n3+5n2+n

2
generators.

Let us see some examples.

The graph L2 consists of two loops e0 and e1 and a single vertex v0.
For n = 1, we have three 0-cells and four 1-cells as in Figure 4.2.13. Then,
π1(Q1(L2)) = 〈x1, x2〉 and so B1(L2) ∼= F2.

For n = 2, we have five 0-cells and eight 1-cells as in Figure 4.2.14. Then,

Figure 4.2.13: Q1(L2)

observe that a presentation for π1(Q2(L2)) has four generators. Hence,
B2(L2) ∼= F4.

The graph L3 consists of 3 loops and a single vertex v0.
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Figure 4.2.14: Q2(L2)

x1

Figure 4.2.15: Q1(L3)
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For n = 1, we have four 0-cells and six 1-cells arranged as in Figure 4.2.15.
Hence, a presentation for π1(Q1(L3)) consists of 3 generators, that is
B1(L3) ∼= F3.
For n = 2, we have a presentation for π1(Q2(L3)) with 10 generators.
Hence, B2(L3) ∼= F10.
For n = 3, we have a presentation for π1(Q3(L3)) with 21 generators.
Hence, B3(L3) ∼= F21.

x2

x5

x6

8

Figure 4.2.16: Q2(L3)

The graph L4 is formed by four loops and a single vertex.
For n = 1, we have a presentation for π1(Q1(L4)) with 4 generators.
Hence, B1(L4) ∼= F4.
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x3

x5

x

x7

x8

x9

x11

x14

x12

x17

x21

Figure 4.2.17: Q3(L3)

Figure 4.2.18: Q1(L4)
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For n = 2, we have a presentation for π1(Q2(L4)) with 19 generators.
Hence, B2(L4) ∼= F19.

x

Figure 4.2.19: Q2(L4)
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4.3 Graphs Gk,h

Let Gk,h with k, h ≥ 1 be a graph consisting of k terminal vertices
v1, . . . , vk, a single vertex v0 of degree 2h + k, k edges such that each ei
joins v0 and vi and h loops attached on v0.
By Corol. 3.3.6, the dimension of Q′n(Gk,h) is equal to 1 since there is one
single vertex of degree greater than 2.

Proposition 4.3.1. The braid group Bn(Gk,h) is isomorphic to a free group on

1− (n + h + k− 2)!(2n + h + k− 1)
n!(h + k− 1)!

+
1
2

[
(2h + k)

(
n + h + k− 2

n− 1

)
+

k

∑
k′=0

h

∑
h′=0

(2h′ + k′)
(

k
k′

)(
h
h′

)(
n− 1

n− k′ − h′

)]
generators.
The pure braid group Pn(Gk,h) is isomorphic to a free group on

1− (n + h + k− 2)!(2n + h + k− 1)
(h + k− 1)!

+
n!
2

[
(2h + k)

(
n + h + k− 2

n− 1

)
+

k

∑
k′=0

h

∑
h′=0

(2h′ + k′)
(

k
k′

)(
h
h′

)(
n− 1

n− k′ − h′

)]
generators.

Proof. The braid group Bn(Gk,h) is a free group since Q′n(Gk,h) is a graph.
Then, in order to compute the number of generators we need to find the
Euler characteristic of Q′n(Gk,h).
We follow a reasoning similar to that used in the previous two sections in
order to describe and count the 0-cells and the 1-cells of Q′n(Gk,h).
The 0-cells of Q′n(Gk,h) are the configurations satisfying one of the follow-
ing characteristics:

i) one point lays on v0 and the other n− 1 points are distributed in the
interiors of the k + h edges of Gk,h;

ii) all the n points are distributed in the interiors of the k + h edges of
Gk,h.

Then, we count the vertices satisfying i) as (k + h− 1)-combinations with
repetitions of n− 1 elements and hence they are exactly (n+h+k−2

n−1 ). Notice
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that these 0-cells must have degree 2h + k. Similarly we count the vertices
satisfying ii) as (k + h)-combinations with repetitions of n elements and
hence they are exactly (n+h+k−1

n ). In this case, the degree of each 0-cell
varies depending on the number of non-empty edges of Gk,h. We have
that the total number of 0-cells of Q′n(Gk,h) is(

n + h + k− 2
n− 1

)
+

(
n + h + k− 1

n

)
.

The 1-cells of Q′n(Gk,h) are the oriented edges from a vertex of type ii) to
a vertex of type i).
The number of 1-cells of Q′n(Gk,h) is

1
2

(
(2h + k)

(
n + h + k− 2

n− 1

)
+

k

∑
k′=0

h

∑
h′=0

(2h′ + k′)
(

k
k′

)(
h
h′

)(
n− 1

n− k′ − h′

))
.

Then, the number of generators for Bn(Gk,h) is equal to 1− χ(Qn(Gk,h))
and the number of generators for Pn(Gk,h) is equal to 1− n!χ(Qn(Gk,h)).

In particular if h = 0 or k = 0 we obtain again the formulas already seen
in the cases of Tk and Lk respectively.
If h = k = 1, we have that Bn(G1,1) ∼= Fn, if k = 2 and h = 1 we get
Bn(G2,1) ∼= Fn2 .

Now we see some examples.
The graph G1,1 consists of two edges one of which is a loop as in Fig-
ure 4.3.20.

For n = 1, we construct the subcomplex Q′1(G1,1) and, as soon as we
choose a maximal tree, we observe from Figure 4.3.21 that there is a sin-
gle edge out of it. Hence, π1(Q′1(G1,1)) ∼= F1.

For n = 2, we get two edges not contained in the maximal tree chosen,
hence π1(Q′2(G1,1)) ∼= F2.

For n = 3, we get three edges not contained in the maximal tree chosen
and so this agrees with Prop. 4.4.1
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Figure 4.3.20: Graph G1,1.

v1

v0

x1

Figure 4.3.21: Q′1(G1,1)

x1x2

Figure 4.3.22: Q′2(G1,1)

x1x2 x3

Figure 4.3.23: Q′3(G1,1)
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Consider the graph G2,1 in Figure 4.3.24. Then, B2(G2,1) ∼= F4,
B3(G2,1) ∼= F9 as we see in the following figures representing the sub-
complexes Q′2(G2,1) and Q′3(G2,1) respectively.

Figure 4.3.24: Graph G2,1.

v1

v0

v2
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x3

4

Figure 4.3.25: Q′2(G2,1)

x2

x4

x

Figure 4.3.26: Q′3(G2,1)
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Let us consider the graph G2,2, then we get the following results for
the braid group Bn(G2,2) :

1. B1(G2,2) ∼= F2,

2. B2(G2,2) ∼= F11,

3. B3(G2,2) ∼= F31,

4. B4(G2,2) ∼= F66.

Figure 4.3.27: Graph G2,2.

v1

v0

v2
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Figure 4.3.28: Q′2(G2,2)
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x7

x11

x15

x19

x20

Figure 4.3.29: Q′3(G2,2)
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4.4 Balloons Bk

We call balloons the graphs described in this section and we denote them
by Bk where k is the number of loops contained in each graph. This
collection of graphs is already discussed in [FS09] where it is given the
following result.

Proposition 4.4.1. [FS09] The braid group B3(Bk) has 3k + 3(k
2) + 2(k

3) gener-
ators and k2 − k + (k + 1)(k

2) relations, all of which are commutators.

Notice that B1 is the graph G1,1 already seen in the previous section.
Let B2 be the graph in Figure 4.4.30.
For n = 2, we get the following presentation:

Figure 4.4.30: Graph B2.

π1(Q′1(B2)) = 〈x1, . . . , x5|x−1
3 x−1

4 x3x−1
5 x−1

3 x4x3x5〉.

Notice that after applying the substitution x4 → x3x4x−1
3 the relation be-

comes x−1
4 x−1

5 x4x5 which is a commutator of generators x4 and x5. Hence,
after renumbering the generators we have

π1(Q′2(B2)) = 〈x1, . . . , x4|[x3, x4]〉

which is a right-angled Artin group and in particular it is isomorphic to
F3 ∗Z2. This result agrees with the corresponding one in [FS09].
For n = 3, we get a presentation for B3(B2) with 9 generators and 6
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Figure 4.4.31: Graph B3.

relations. By Prop. 4.4.1, we should have 9 generators and 5 relations and
indeed after a substitution we observe that two of the found relations are
equivalent.

Let us consider the graph B3 in Figure 4.4.31.
For n = 2, we get the following presentation:

π1(Q′2(B3)) = 〈x1, . . . , x9 | x−1
4 x−1

7 x4x−1
8 x−1

4 x7x4x8,

x−1
5 x−1

7 x5x−1
9 x−1

5 x7x5x9, x−1
6 x−1

8 x6x−1
9 x−1

6 x8x6x9〉.

By applying the substitutions x7 → x4x7x−1
4 , x9 → x−1

5 x9x5 and
x8 → x6x8x−1

6 then the relations become commutators of generators:
x7x8x−1

7 x−1
8 , x7x9x−1

7 x−1
9 and x8x9x−1

8 x−1
9 . Then, after renumbering the

generators we get

B2(B3) = 〈x1, . . . , x6|[x4, x5], [x5, x6], [x4, x6]〉.

Hence, B2(B3) is a right-angled Artin group and it is isomorphic to F6 ∗
Z3.
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4.5 Graphs Θk

Let Θk be the graph consisting of two vertices and k edges such that each
edge joins the two vertices.
For k = 1, Θ1 consists of a single edge and its endpoints, hence Qn(Θ1)
is contractible since dimQ′n(Θ1) = 0.
For k = 2, the graph Θ2 is the graph in Figure 4.5.32 and we observe that
the results agree with those already seen for L1.

Figure 4.5.32: Graph Θ2.

1

Figure 4.5.33: The subcomplex Q′1(Θ2).

For k = 3, we have that Θ3 is homeomorphic to the capital greek letter
Θ. Then, we get B2(Θ3) ∼= B3(Θ3) ∼= F3.

Let us consider the graph Θ4.
We get B1(Θ4) ∼= F3 and B2(Θ4) ∼= F6.



78 Chapter 4

x2

x

Figure 4.5.34: The subcomplex Q′2(Θ2).

x3

x5

x

Figure 4.5.35: Q′2(Θ3).
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4.6 Chains Ck

Let Ck with k ≥ 3 indicate the graph consisting of k vertices and 2(k− 1)
edges such that each pair of vertices is joined by two edges as a chain.
Let C3 be the graph in Figure 4.6.36.
Notice that the results for C3 coincide to those for L2. Let C4 be the graph

Figure 4.6.36: Graph C3.

in Figure 4.6.37.
For n = 1, we can see from Figure 4.6.38 that there are three generators
for the braid group B1(C4).
For n = 2, we get the following presentation

B2(C4) = 〈x1, . . . , x7|x−1
1 x6x−1

7 x−1
6 x1x6x7x−1

6 〉.

Then, applying the substitution x7 → x−1
6 x7x6 and renumbering the gen-

erators we have:
B2(C4) = 〈x1, . . . , x6|[x1, x6]〉

which is a right-angled Artin group and hence, B2(C4) ∼= F4 ∗Z2.

Figure 4.6.37: Graph C4.
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Figure 4.6.38: The subcomplex Q′1(C4).

4.7 The smallest non linear tree T

Let T be the smallest non linear tree as in Figure 4.7.39.
For n = 1, the subcomplex Q′1(T) is a tree and hence the braid group

Figure 4.7.39: Graph T.

B1(T) is trivial.
For n = 2, the presentation can be reduced to the form:

π1(Q′2(T)) = 〈x1, x2, x3, x4〉

and so B2(T) is isomorphic to F4.

For n = 3, we get B3(T) ∼= F12. These results agree with 2.3.11, indeed
the braid group is a right-angled Artin group if n < 4. Now we are going
to verify that for n = 4 we cannot get a right-angled Artin group.
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For n = 4, we get a presentation consisting of 24 generators, 4 commu-
tators of generators and two other relations. We observe that there are
16 generators not involved in the relations, hence the braid group B4(T)
is isomorphic to F16 ∗ A where A is given by the relations. After having
eliminated the free generators, we get the following reduced presentation:

〈x1, . . . , x8 | [x2, x6], [x4, x7], [x6, x7], [x6, x8], x−1
1 x3x−1

8 x−1
3 x1x8,

x−1
1 x−1

5 x−1
7 x5x1x−1

8 x−1
1 x−1

5 x7x5x1x8〉.

After applying the substitutions x3 → x1x3 and x5 → x5x−1
1 we obtain:

〈x1, . . . , x8 | [x2, x6], [x4, x7], [x6, x7], [x6, x8], [x3, x8], x−1
5 x−1

7 x5x−1
8 x−1

5 x7x5x8〉

but it is not possible to write all the relations as commutators of genera-
tors. Hence, B4(T) is not a right-angled Artin group.
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4.8 Other examples with non-trivial relations

We call H the graph homeomorphic to the capital letter H.
For n = 1, notice that Q′1(H) is a tree isomorphic to H and hence

Figure 4.8.40: Graph H.

π1(Q′1(H)) is trivial. For n = 2, we can observe in Figure 4.8.43 that

Figure 4.8.41: The cubical subcomplex Q′1(H).

there are eleven edges out of the chosen tree and so we get π1(Q′2(H)) =
〈x1, x2〉. Hence, B2(H) ∼= F2.
For n = 3, we get B3(H) ∼= F6.
For n = 4, we have:

π1(Q′4(H)) = 〈x1, . . . , x12|x6x11x−1
12 x−1

6 x12x−1
11 〉.
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Figure 4.8.42: The subcomplex Q′2(H).
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Figure 4.8.43: The maximal tree chosen on the subcomplex Q′2(H).
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If we apply the substitution x11 → x11x12 the relation becomes a commu-
tator of generators x6 and x11 and then B4(H) ∼= F10 ∗Z2.
For n = 5, after similar substitutions and renumberings, we find that also
B5(H) is a right-angled Artin group consisting of 20 generators and 5
commutators.
For n = 6, B6(H) ∼= F19 ∗ (F1 ×F4) ∗ (F1 ×F5).

Let us call Γ the graph consisting of two vertices of degree 3 and three
edges arranged as in Figure 4.8.44. Notice that there are no terminal ver-
tices in Γ, hence Qn(Γ) = Q′n(G).
For n = 1, we can construct the cubical subcomplex Q1(Γ) as in Fig-

Figure 4.8.44: Graph Γ.

ure 4.8.45. Let us observe that when we choose a maximal spanning tree,
then there are 2 edges out of it. Hence, π1(Q1(Γ) is isomorphic to F2.

For n = 2, a presentation for π1(Q2(Γ)) is

π1(Q2(Γ) = 〈x1, . . . , x4|[x3, x4]〉.

Hence, B2(Γ) ∼= F2 ∗Z2.
For n = 3, a presentation for π1(Q3(Γ)) is

B3(Γ) = 〈x1, . . . , x6|[x3, x6], [x4, x6], [x4, x5]〉

and hence B3(Γ) ∼= F2 ∗Z4.
For n = 4, the braid group B4(Γ) is a right-angled Artin group indeed a

x2

Figure 4.8.45: The cubical complex Q1(Γ).
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x
1

x
2

x
4

x
6

Figure 4.8.46: The subcomplex Q2(Γ).
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presentation is the following

B4(Γ) = 〈x1, . . . , x8|[x3, x8], [x4, x7], [x4, x8], [x5, x6], [x5, x7], [x5, x8]〉.
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Appendix A

Mathematica code

We see in detail the code used to create figures and to compute pre-
sentations for braid groups as seen in chapter 4.

Given a graph G we want to construct the corresponding cubical complex
Qn(G) and the subcomplex Q′n(G).
The function ConfigVertices takes in input the graph G, the number of
points n and the type of the cubical complex chosen: nothing if we want
to consider Qn(G), "Reduced" if we want Q′n(G). The outputs are all the
0-cells of Qn(G) or Q′n(G) respectively.
ConfigEdges takes the graph G and the list of 0-cells found and give us the
1-cells as edges between the 0-cells and then ConfigGraph combine these
two classes of cells into a unique structure.

89
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The function AnnotatedConfigGraph chooses a spanning tree on the
graph resulted by ConfigGraph and associates a numbering to the edges
which are left out of the spanning tree.

Then, to compute a presentation for the braid group Bn(G) we define
the function BraidGroupPresentation which takes as input the graph ob-
tained by using AnnotatedConfigGraph. The generators of the presentation
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obtained are the edges out of the spanning tree chosen by AnnotatedCon-
figGraph and the relations are taken considering the edges which consti-
tute the boundaries of the 2-cells of the cubical complex Qn(G) or Q′n(G).

Finally, we need to simplify the presentation obtained by BraidGroup-
Presentation and hence we define the function ReducePresentation, which
applying the Tietze transformations whenever possible manages to out-
put a reduced presentation for Bn(G).
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